cellVolumeWeightCellCellStencil.C 36.3 KB
Newer Older
1 2 3 4
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
5
    \\  /    A nd           | Copyright (C) 2014-2018 OpenCFD Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify i
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "cellVolumeWeightCellCellStencil.H"
#include "addToRunTimeSelectionTable.H"
#include "OBJstream.H"
#include "Time.H"
#include "meshToMesh.H"
#include "cellVolumeWeightMethod.H"
#include "fvMeshSubset.H"
#include "regionSplit.H"
#include "globalIndex.H"
#include "oversetFvPatch.H"
#include "zeroGradientFvPatchFields.H"
#include "syncTools.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{
namespace cellCellStencils
{
    defineTypeNameAndDebug(cellVolumeWeight, 0);
    addToRunTimeSelectionTable(cellCellStencil, cellVolumeWeight, mesh);
}
}

Foam::scalar
51
Foam::cellCellStencils::cellVolumeWeight::defaultOverlapTolerance_ = 1e-9;
52 53 54 55 56 57 58 59 60 61 62 63


// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * //

void Foam::cellCellStencils::cellVolumeWeight::walkFront
(
    const scalar layerRelax,
    labelList& allCellTypes,
    scalarField& allWeight
) const
{
    // Current front
64 65
    bitSet isFront(mesh_.nFaces());
    // unused: bitSet doneCell(mesh_.nCells());
66 67 68 69 70 71 72 73 74 75 76 77 78 79

    const fvBoundaryMesh& fvm = mesh_.boundary();


    // 'overset' patches

    forAll(fvm, patchI)
    {
        if (isA<oversetFvPatch>(fvm[patchI]))
        {
            Pout<< "Storing faces on patch " << fvm[patchI].name() << endl;

            forAll(fvm[patchI], i)
            {
80
                isFront.set(fvm[patchI].start()+i);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
            }
        }
    }


    // Outside of 'hole' region
    {
        const labelList& own = mesh_.faceOwner();
        const labelList& nei = mesh_.faceNeighbour();

        for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
        {
            label ownType = allCellTypes[own[faceI]];
            label neiType = allCellTypes[nei[faceI]];
            if
            (
                 (ownType == HOLE && neiType != HOLE)
              || (ownType != HOLE && neiType == HOLE)
            )
            {
                //Pout<< "Front at face:" << faceI
                //    << " at:" << mesh_.faceCentres()[faceI] << endl;
103
                isFront.set(faceI);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            }
        }

        labelList nbrCellTypes;
        syncTools::swapBoundaryCellList(mesh_, allCellTypes, nbrCellTypes);

        for
        (
            label faceI = mesh_.nInternalFaces();
            faceI < mesh_.nFaces();
            faceI++
        )
        {
            label ownType = allCellTypes[own[faceI]];
            label neiType = nbrCellTypes[faceI-mesh_.nInternalFaces()];

            if
            (
                 (ownType == HOLE && neiType != HOLE)
              || (ownType != HOLE && neiType == HOLE)
            )
            {
                //Pout<< "Front at coupled face:" << faceI
                //    << " at:" << mesh_.faceCentres()[faceI] << endl;
128
                isFront.set(faceI);
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
            }
        }
    }



    // Current interpolation fraction
    scalar fraction = 1.0;

    while (fraction > SMALL && returnReduce(isFront.count(), sumOp<label>()))
    {
        // Interpolate cells on front

        Info<< "Front : fraction:" << fraction
            << " size:" << returnReduce(isFront.count(), sumOp<label>())
            << endl;

146
        bitSet newIsFront(mesh_.nFaces());
147 148
        forAll(isFront, faceI)
        {
149
            if (isFront.test(faceI))
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            {
                label own = mesh_.faceOwner()[faceI];
                if (allCellTypes[own] != HOLE)
                {
                    if (allWeight[own] < fraction)
                    {
                        allWeight[own] = fraction;

                        if (debug)
                        {
                            Pout<< "    setting cell "
                                << mesh_.cellCentres()[own]
                                << " to " << fraction << endl;
                        }
                        allCellTypes[own] = INTERPOLATED;
165
                        newIsFront.set(mesh_.cells()[own]);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                    }
                }
                if (mesh_.isInternalFace(faceI))
                {
                    label nei = mesh_.faceNeighbour()[faceI];
                    if (allCellTypes[nei] != HOLE)
                    {
                        if (allWeight[nei] < fraction)
                        {
                            allWeight[nei] = fraction;

                            if (debug)
                            {
                                Pout<< "    setting cell "
                                    << mesh_.cellCentres()[nei]
                                    << " to " << fraction << endl;
                            }

                            allCellTypes[nei] = INTERPOLATED;
185
                            newIsFront.set(mesh_.cells()[nei]);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                        }
                    }
                }
            }
        }

        syncTools::syncFaceList(mesh_, newIsFront, orEqOp<unsigned int>());

        isFront.transfer(newIsFront);

        fraction -= layerRelax;
    }
}


void Foam::cellCellStencils::cellVolumeWeight::findHoles
(
    const globalIndex& globalCells,
    const fvMesh& mesh,
    const labelList& zoneID,
    const labelListList& stencil,
    labelList& cellTypes
) const
{
    const fvBoundaryMesh& pbm = mesh.boundary();
    const labelList& own = mesh.faceOwner();
    const labelList& nei = mesh.faceNeighbour();


    // The input cellTypes will be
    // - HOLE           : cell part covered by other-mesh patch
    // - INTERPOLATED   : cell fully covered by other-mesh patch
    //                    or next to 'overset' patch
    // - CALCULATED     : otherwise
    //
    // so we start a walk from our patches and any cell we cannot reach
    // (because we walk is stopped by other-mesh patch) is a hole.


    boolList isBlockedFace(mesh.nFaces(), false);
    for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
    {
        label ownType = cellTypes[own[faceI]];
        label neiType = cellTypes[nei[faceI]];
        if
        (
             (ownType == HOLE && neiType != HOLE)
          || (ownType != HOLE && neiType == HOLE)
        )
        {
            isBlockedFace[faceI] = true;
        }
    }

    labelList nbrCellTypes;
    syncTools::swapBoundaryCellList(mesh, cellTypes, nbrCellTypes);

    for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
    {
        label ownType = cellTypes[own[faceI]];
        label neiType = nbrCellTypes[faceI-mesh.nInternalFaces()];

        if
        (
             (ownType == HOLE && neiType != HOLE)
          || (ownType != HOLE && neiType == HOLE)
        )
        {
            isBlockedFace[faceI] = true;
        }
    }

    regionSplit cellRegion(mesh, isBlockedFace);

    Info<< typeName << " : detected " << cellRegion.nRegions()
        << " mesh regions after overset" << nl << endl;



    // Now we'll have a mesh split according to where there are cells
    // covered by the other-side patches. See what we can reach from our
    // real patches

    //  0 : region not yet determined
Andrew Heather's avatar
Andrew Heather committed
270
    //  1 : borders blockage so is not ok (but can be overridden by real
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    //      patch)
    //  2 : has real patch in it so is reachable
    labelList regionType(cellRegion.nRegions(), 0);


    // See if any regions borders blockage. Note: isBlockedFace is already
    // parallel synchronised.
    {
        for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
        {
            if (isBlockedFace[faceI])
            {
                label ownRegion = cellRegion[own[faceI]];

                if (cellTypes[own[faceI]] != HOLE)
                {
                    if (regionType[ownRegion] == 0)
                    {
                        Pout<< "Mark region:" << ownRegion
                            << " on zone:" << zoneID[own[faceI]]
                            << " as next to blockage at:"
                            << mesh.faceCentres()[faceI] << endl;

                        regionType[ownRegion] = 1;
                    }
                }

                label neiRegion = cellRegion[nei[faceI]];

                if (cellTypes[nei[faceI]] != HOLE)
                {
                    if (regionType[neiRegion] == 0)
                    {
                        Pout<< "Mark region:" << neiRegion
                            << " on zone:" << zoneID[nei[faceI]]
                            << " as next to blockage at:"
                            << mesh.faceCentres()[faceI] << endl;
                        regionType[neiRegion] = 1;
                    }
                }
            }
        }
        for
        (
            label faceI = mesh.nInternalFaces();
            faceI < mesh.nFaces();
            faceI++
        )
        {
            if (isBlockedFace[faceI])
            {
                label ownRegion = cellRegion[own[faceI]];

                if (regionType[ownRegion] == 0)
                {
                    Pout<< "Mark region:" << ownRegion
                        << " on zone:" << zoneID[own[faceI]]
                        << " as next to blockage at:"
                        << mesh.faceCentres()[faceI] << endl;
                    regionType[ownRegion] = 1;
                }
            }
        }
    }


    // Override with real patches
    forAll(pbm, patchI)
    {
        const fvPatch& fvp = pbm[patchI];

        if (isA<oversetFvPatch>(fvp))
        {}
        else if (!fvPatch::constraintType(fvp.type()))
        {
            Pout<< "Proper patch " << fvp.name() << " of type " << fvp.type()
                << endl;

            const labelList& fc = fvp.faceCells();
            forAll(fc, i)
            {
                label regionI = cellRegion[fc[i]];

                if (cellTypes[fc[i]] != HOLE && regionType[regionI] != 2)
                {
                    Pout<< "reachable region : " << regionI
                        << " at cell " << mesh.cellCentres()[fc[i]]
                        << " on zone " << zoneID[fc[i]]
                        << endl;
                    regionType[regionI] = 2;
                }
            }
        }
    }

    // Now we've handled
    // - cells next to blocked cells
    // - coupled boundaries
    // Only thing to handle is the interpolation between regions


    labelListList compactStencil(stencil);
    List<Map<label>> compactMap;
    mapDistribute map(globalCells, compactStencil, compactMap);

    while (true)
    {
        // Synchronise region status on processors
        // (could instead swap status through processor patches)
        Pstream::listCombineGather(regionType, maxEqOp<label>());
        Pstream::listCombineScatter(regionType);

        // Communicate region status through interpolative cells
384
        labelList cellRegionType(labelUIndList(regionType, cellRegion));
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        map.distribute(cellRegionType);


        label nChanged = 0;
        forAll(pbm, patchI)
        {
            const fvPatch& fvp = pbm[patchI];

            if (isA<oversetFvPatch>(fvp))
            {
                const labelUList& fc = fvp.faceCells();
                forAll(fc, i)
                {
                    label cellI = fc[i];
                    label regionI = cellRegion[cellI];

                    if (regionType[regionI] != 2)
                    {
                        const labelList& slots = compactStencil[cellI];
                        forAll(slots, i)
                        {
                            label otherType = cellRegionType[slots[i]];

                            if (otherType == 2)
                            {
                                Pout<< "Reachable through interpolation : "
                                    << regionI << " at cell "
                                    << mesh.cellCentres()[cellI]
                                    << endl;
                                regionType[regionI] = 2;
                                nChanged++;
                                break;
                            }
                        }
                    }
                }
            }
        }


        reduce(nChanged, sumOp<label>());
        if (nChanged == 0)
        {
            break;
        }
    }


    // See which regions have not been visited (regionType == 1)
    forAll(cellRegion, cellI)
    {
        label type = regionType[cellRegion[cellI]];
        if (type == 1 && cellTypes[cellI] != HOLE)
        {
            cellTypes[cellI] = HOLE;
        }
    }
}


void Foam::cellCellStencils::cellVolumeWeight::markPatchCells
(
    const fvMesh& mesh,
    const labelList& cellMap,
    labelList& patchCellTypes
) const
{
    const fvBoundaryMesh& pbm = mesh.boundary();

    forAll(pbm, patchI)
    {
        const fvPatch& fvp = pbm[patchI];
        const labelList& fc = fvp.faceCells();

        if (isA<oversetFvPatch>(fvp))
        {
            Pout<< "Marking cells on overset patch " << fvp.name() << endl;
            forAll(fc, i)
            {
                label cellI = fc[i];
                patchCellTypes[cellMap[cellI]] = OVERSET;
            }
        }
        else if (!fvPatch::constraintType(fvp.type()))
        {
            Pout<< "Marking cells on proper patch " << fvp.name()
                << " with type " << fvp.type() << endl;
            forAll(fc, i)
            {
                label cellI = fc[i];
                if (patchCellTypes[cellMap[cellI]] != OVERSET)
                {
                    patchCellTypes[cellMap[cellI]] = PATCH;
                }
            }
        }
    }
}


void Foam::cellCellStencils::cellVolumeWeight::interpolatePatchTypes
(
    const labelListList& addressing,
    const labelList& patchTypes,
    labelList& result
) const
{
    forAll(result, cellI)
    {
        const labelList& slots = addressing[cellI];
        forAll(slots, i)
        {
            label type = patchTypes[slots[i]];

            if (type == OVERSET)
            {
                // 'overset' overrides anything
                result[cellI] = OVERSET;
                break;
            }
            else if (type == PATCH)
            {
                // 'patch' overrides -1 and 'other'
                result[cellI] = PATCH;
            }
            else if (result[cellI] == -1)
            {
                // 'other' overrides -1 only
                result[cellI] = OTHER;
            }
        }
    }
}


void Foam::cellCellStencils::cellVolumeWeight::interpolatePatchTypes
(
    const autoPtr<mapDistribute>& mapPtr,
    const labelListList& addressing,
    const labelList& patchTypes,
    labelList& result
) const
{
    if (result.size() != addressing.size())
    {
        FatalErrorInFunction << "result:" << result.size()
            << " addressing:" << addressing.size() << exit(FatalError);
    }


    // Initialise to not-mapped
    result = -1;

    if (mapPtr.valid())
    {
        // Pull remote data into order of addressing
        labelList work(patchTypes);
        mapPtr().distribute(work);

        interpolatePatchTypes(addressing, work, result);
    }
    else
    {
        interpolatePatchTypes(addressing, patchTypes, result);
    }
}


void Foam::cellCellStencils::cellVolumeWeight::combineCellTypes
(
    const label subZoneID,
    const fvMesh& subMesh,
    const labelList& subCellMap,

    const label donorZoneID,
    const labelListList& addressing,
    const List<scalarList>& weights,
    const labelList& otherCells,
    const labelList& interpolatedOtherPatchTypes,

    labelListList& allStencil,
    scalarListList& allWeights,
    labelList& allCellTypes,
    labelList& allDonorID
) const
{
    forAll(subCellMap, subCellI)
    {
        label cellI = subCellMap[subCellI];

        bool validDonors = true;
        switch (interpolatedOtherPatchTypes[subCellI])
        {
            case -1:
            {
                validDonors = false;
            }
            break;

            case OTHER:
            {
                // No patch interaction so keep valid
            }
            break;

            case PATCH:
            {
                if (allCellTypes[cellI] != HOLE)
                {
                    scalar overlapVol = sum(weights[subCellI]);
                    scalar v = mesh_.V()[cellI];
                    if (overlapVol < (1.0-overlapTolerance_)*v)
                    {
                        //Pout<< "** Patch overlap:" << cellI
                        //    << " at:" << mesh_.cellCentres()[cellI] << endl;
                        allCellTypes[cellI] = HOLE;
                        validDonors = false;
                    }
                }
            }
            break;

            case OVERSET:
            {
                validDonors = false;
            }
            break;
        }


        if (validDonors)
        {
            // There are a few possible choices how to choose between multiple
            // donor candidates:
            // 1 highest overlap volume. However this is generally already
            //   99.9% so you're just measuring truncation error.
            // 2 smallest donors cells or most donor cells. This is quite
            //   often done but can cause switching of donor zone from one
            //   time step to the other if the donor meshes are non-uniform
            //   and the acceptor cells just happens to be sweeping through
            //   some small donor cells.
            // 3 nearest zoneID. So zone 0 preferentially interpolates from
            //   zone 1, zone 1 preferentially from zone 2 etc.

            //- Option 1:
            //scalar currentVol = sum(allWeights[cellI]);
            //if (overlapVol[subCellI] > currentVol)

            //- Option 3:
            label currentDiff = mag(subZoneID-allDonorID[cellI]);
            label thisDiff = mag(subZoneID-donorZoneID);

            if
            (
                allDonorID[cellI] == -1
             || (thisDiff < currentDiff)
             || (thisDiff == currentDiff && donorZoneID > allDonorID[cellI])
            )
            {
                allWeights[cellI] = weights[subCellI];
                allStencil[cellI] =
646
                    labelUIndList(otherCells, addressing[subCellI]);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
                allDonorID[cellI] = donorZoneID;
            }
        }
    }
}


// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //

Foam::cellCellStencils::cellVolumeWeight::cellVolumeWeight
(
    const fvMesh& mesh,
    const dictionary& dict,
    const bool doUpdate
)
:
    cellCellStencil(mesh),
    dict_(dict),
    overlapTolerance_(defaultOverlapTolerance_),
    cellTypes_(labelList(mesh.nCells(), CALCULATED)),
    interpolationCells_(0),
    cellInterpolationMap_(),
    cellStencil_(0),
    cellInterpolationWeights_(0),
    cellInterpolationWeight_
    (
        IOobject
        (
            "cellInterpolationWeight",
            mesh_.facesInstance(),
            mesh_,
            IOobject::NO_READ,
            IOobject::NO_WRITE,
            false
        ),
        mesh_,
683
        dimensionedScalar(dimless, Zero),
684 685 686
        zeroGradientFvPatchScalarField::typeName
    )
{
687 688 689 690 691 692 693 694 695 696 697
    // Protect local fields from interpolation
    nonInterpolatedFields_.insert("cellTypes");
    nonInterpolatedFields_.insert("cellInterpolationWeight");

    // For convenience also suppress frequently used displacement field
    nonInterpolatedFields_.insert("cellDisplacement");
    nonInterpolatedFields_.insert("grad(cellDisplacement)");
    const word w("snGradCorr(cellDisplacement)");
    const word d("((viscosity*faceDiffusivity)*magSf)");
    nonInterpolatedFields_.insert("surfaceIntegrate(("+d+"*"+w+"))");

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    // Read zoneID
    this->zoneID();

    // Read old-time cellTypes
    IOobject io
    (
        "cellTypes",
        mesh_.time().timeName(),
        mesh_,
        IOobject::READ_IF_PRESENT,
        IOobject::NO_WRITE,
        false
    );
    if (io.typeHeaderOk<volScalarField>(true))
    {
        if (debug)
        {
            Pout<< "Reading cellTypes from time " << mesh_.time().timeName()
                << endl;
        }

        const volScalarField volCellTypes(io, mesh_);
        forAll(volCellTypes, celli)
        {
            // Round to integer
            cellTypes_[celli] = volCellTypes[celli];
        }
    }

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    if (doUpdate)
    {
        update();
    }
}


// * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //

Foam::cellCellStencils::cellVolumeWeight::~cellVolumeWeight()
{}


// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //

bool Foam::cellCellStencils::cellVolumeWeight::update()
{
    scalar layerRelax(dict_.lookupOrDefault("layerRelax", 1.0));
    const labelIOList& zoneID = this->zoneID();

    label nZones = gMax(zoneID)+1;
    labelList nCellsPerZone(nZones, 0);
    forAll(zoneID, cellI)
    {
        nCellsPerZone[zoneID[cellI]]++;
    }
    Pstream::listCombineGather(nCellsPerZone, plusEqOp<label>());
    Pstream::listCombineScatter(nCellsPerZone);


    Info<< typeName << " : detected " << nZones
        << " mesh regions" << nl << endl;


    PtrList<fvMeshSubset> meshParts(nZones);

    Info<< incrIndent;
764
    forAll(meshParts, zonei)
765
    {
766 767 768 769 770 771 772 773
        Info<< indent<< "zone:" << zonei << " nCells:"
            << nCellsPerZone[zonei] << nl;

        meshParts.set
        (
            zonei,
            new fvMeshSubset(mesh_, zonei, zoneID)
        );
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    }
    Info<< decrIndent;



    // Current best guess for cells. Includes best stencil. Weights should
    // add up to volume.
    labelList allCellTypes(mesh_.nCells(), CALCULATED);
    labelList allPatchTypes(mesh_.nCells(), OTHER);
    labelListList allStencil(mesh_.nCells());
    scalarListList allWeights(mesh_.nCells());
    // zoneID of donor
    labelList allDonorID(mesh_.nCells(), -1);


    // Marking patch cells
    forAll(meshParts, partI)
    {
        const fvMesh& partMesh = meshParts[partI].subMesh();
        const labelList& partCellMap = meshParts[partI].cellMap();

        // Mark cells with
        // - overset boundary
        // - other, proper boundary
        // - other cells
        Info<< "Marking patch-cells on zone " << partI << endl;
        markPatchCells(partMesh, partCellMap, allPatchTypes);
    }


    labelList nCells(count(3, allPatchTypes));
    Info<< nl
        << "After patch analysis : nCells : "
        << returnReduce(allPatchTypes.size(), sumOp<label>()) << nl
        << incrIndent
        << indent << "other  : " << nCells[OTHER] << nl
        << indent << "patch  : " << nCells[PATCH] << nl
        << indent << "overset: " << nCells[OVERSET] << nl
        << decrIndent << endl;

    globalIndex globalCells(mesh_.nCells());


    for (label srcI = 0; srcI < meshParts.size()-1; srcI++)
    {
        const fvMesh& srcMesh = meshParts[srcI].subMesh();
        const labelList& srcCellMap = meshParts[srcI].cellMap();

        for (label tgtI = srcI+1; tgtI < meshParts.size(); tgtI++)
        {
            const fvMesh& tgtMesh = meshParts[tgtI].subMesh();
            const labelList& tgtCellMap = meshParts[tgtI].cellMap();

            meshToMesh mapper
            (
                srcMesh,
                tgtMesh,
831
                meshToMesh::interpolationMethod::imCellVolumeWeight,
832 833
                HashTable<word>(0),     // patchMap,
                wordList(0),            // cuttingPatches
834
                meshToMesh::procMapMethod::pmAABB,
835 836 837 838 839 840 841 842 843 844 845
                false                   // do not normalise
            );


            {
                // Get tgt patch types on src mesh
                labelList interpolatedTgtPatchTypes(srcMesh.nCells(), -1);
                interpolatePatchTypes
                (
                    mapper.tgtMap(),            // How to get remote data local
                    mapper.srcToTgtCellAddr(),
846
                    labelList(labelUIndList(allPatchTypes, tgtCellMap)),
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                    interpolatedTgtPatchTypes
                );

                // Get target cell labels in global cell indexing (on overall
                // mesh)
                labelList tgtGlobalCells(tgtMesh.nCells());
                {
                    forAll(tgtCellMap, tgtCellI)
                    {
                        label cellI = tgtCellMap[tgtCellI];
                        tgtGlobalCells[tgtCellI] = globalCells.toGlobal(cellI);
                    }
                    if (mapper.tgtMap().valid())
                    {
                        mapper.tgtMap()().distribute(tgtGlobalCells);
                    }
                }
                combineCellTypes
                (
                    srcI,
                    srcMesh,
                    srcCellMap,

                    tgtI,
                    mapper.srcToTgtCellAddr(),
                    mapper.srcToTgtCellWght(),
                    tgtGlobalCells,
                    interpolatedTgtPatchTypes,

                    // Overall mesh data
                    allStencil,
                    allWeights,
                    allCellTypes,
                    allDonorID
                );
            }

            {
                // Get src patch types on tgt mesh
                labelList interpolatedSrcPatchTypes(tgtMesh.nCells(), -1);
                interpolatePatchTypes
                (
                    mapper.srcMap(),            // How to get remote data local
                    mapper.tgtToSrcCellAddr(),
891
                    labelList(labelUIndList(allPatchTypes, srcCellMap)),
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
                    interpolatedSrcPatchTypes
                );

                labelList srcGlobalCells(srcMesh.nCells());
                {
                    forAll(srcCellMap, srcCellI)
                    {
                        label cellI = srcCellMap[srcCellI];
                        srcGlobalCells[srcCellI] = globalCells.toGlobal(cellI);
                    }
                    if (mapper.srcMap().valid())
                    {
                        mapper.srcMap()().distribute(srcGlobalCells);
                    }
                }

                combineCellTypes
                (
                    tgtI,
                    tgtMesh,
                    tgtCellMap,

                    srcI,
                    mapper.tgtToSrcCellAddr(),
                    mapper.tgtToSrcCellWght(),
                    srcGlobalCells,
                    interpolatedSrcPatchTypes,

                    // Overall mesh data
                    allStencil,
                    allWeights,
                    allCellTypes,
                    allDonorID
                );
            }
        }
    }


    // Use the patch types and weights to decide what to do
    forAll(allPatchTypes, cellI)
    {
        if (allCellTypes[cellI] != HOLE)
        {
            switch (allPatchTypes[cellI])
            {
                case OVERSET:
                {
                    // Interpolate. Check if enough overlap
                    scalar v = mesh_.V()[cellI];
                    scalar overlapVol = sum(allWeights[cellI]);
                    if (overlapVol > (1.0-overlapTolerance_)*v)
                    {
                        allCellTypes[cellI] = INTERPOLATED;
                    }
                    else
                    {
                        //Pout<< "Holeing interpolated cell:" << cellI
                        //    << " at:" << mesh_.cellCentres()[cellI] << endl;
                        allCellTypes[cellI] = HOLE;
                        allWeights[cellI].clear();
                        allStencil[cellI].clear();
                    }
                    break;
                }
            }
        }
    }


    // Knock out cell with insufficient interpolation weights
    forAll(allCellTypes, cellI)
    {
        if (allCellTypes[cellI] == INTERPOLATED)
        {
            scalar v = mesh_.V()[cellI];
            scalar overlapVol = sum(allWeights[cellI]);
            if (overlapVol < (1.0-overlapTolerance_)*v)
            {
                //Pout<< "Holeing cell:" << cellI
                //    << " at:" << mesh_.cellCentres()[cellI] << endl;
                allCellTypes[cellI] = HOLE;
                allWeights[cellI].clear();
                allStencil[cellI].clear();
            }
        }
    }


    // Mark unreachable bits
    findHoles(globalCells, mesh_, zoneID, allStencil, allCellTypes);


    // Add buffer interpolation layer around holes
    scalarField allWeight(mesh_.nCells(), 0.0);
    walkFront(layerRelax, allCellTypes, allWeight);


sergio's avatar
ENH:  
sergio committed
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    // Check previous iteration cellTypes_ for any hole->calculated changes
    {
        label nCalculated = 0;

        forAll(cellTypes_, celli)
        {
            if (allCellTypes[celli] == CALCULATED && cellTypes_[celli] == HOLE)
            {
                if (allStencil[celli].size() == 0)
                {
                    FatalErrorInFunction
                        << "Cell:" << celli
                        << " at:" << mesh_.cellCentres()[celli]
                        << " zone:" << zoneID[celli]
                        << " changed from hole to calculated"
                        << " but there is no donor"
                        << exit(FatalError);
                }
                else
                {
                    allCellTypes[celli] = INTERPOLATED;
                    nCalculated++;
                }
            }
        }

        if (debug)
        {
            Pout<< "Detected " << nCalculated << " cells changing from hole"
                << " to calculated. Changed these to interpolated"
                << endl;
        }
    }

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    // Normalise weights, Clear storage
    forAll(allCellTypes, cellI)
    {
        if (allCellTypes[cellI] == INTERPOLATED)
        {
            if (allWeight[cellI] < SMALL || allStencil[cellI].size() == 0)
            {
                //Pout<< "Clearing cell:" << cellI
                //    << " at:" << mesh_.cellCentres()[cellI] << endl;
                allWeights[cellI].clear();
                allStencil[cellI].clear();
                allWeight[cellI] = 0.0;
            }
            else
            {
                scalar s = sum(allWeights[cellI]);
                forAll(allWeights[cellI], i)
                {
                    allWeights[cellI][i] /= s;
                }
            }
        }
        else
        {
            allWeights[cellI].clear();
            allStencil[cellI].clear();
        }
    }


    // Write to volField for debugging
    if (debug)
    {
        volScalarField patchTypes
        (
            IOobject
            (
                "patchTypes",
                mesh_.time().timeName(),
                mesh_,
                IOobject::NO_READ,
                IOobject::NO_WRITE,
                false
            ),
            mesh_,
1069
            dimensionedScalar(dimless, Zero),
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            zeroGradientFvPatchScalarField::typeName
        );

        forAll(patchTypes.internalField(), cellI)
        {
            patchTypes[cellI] = allPatchTypes[cellI];
        }
        patchTypes.correctBoundaryConditions();
        patchTypes.write();
    }
    if (debug)
    {
        volScalarField volTypes
        (
            IOobject
            (
                "cellTypes",
                mesh_.time().timeName(),
                mesh_,
                IOobject::NO_READ,
                IOobject::NO_WRITE,
                false
            ),
            mesh_,
1094
            dimensionedScalar(dimless, Zero),
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            zeroGradientFvPatchScalarField::typeName
        );

        forAll(volTypes.internalField(), cellI)
        {
            volTypes[cellI] = allCellTypes[cellI];
        }
        volTypes.correctBoundaryConditions();
        volTypes.write();
    }


sergio's avatar
ENH:  
sergio committed
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
//     // Check previous iteration cellTypes_ for any hole->calculated changes
//     {
//         label nCalculated = 0;
//
//         forAll(cellTypes_, celli)
//         {
//             if (allCellTypes[celli] == CALCULATED && cellTypes_[celli] == HOLE)
//             {
//                 if (allStencil[celli].size() == 0)
//                 {
//                     FatalErrorInFunction
//                         << "Cell:" << celli
//                         << " at:" << mesh_.cellCentres()[celli]
//                         << " zone:" << zoneID[celli]
//                         << " changed from hole to calculated"
//                         << " but there is no donor"
//                         << exit(FatalError);
//                 }
//                 else
//                 {
//                     allCellTypes[celli] = INTERPOLATED;
//                     nCalculated++;
//                 }
//             }
//         }
//
//         if (debug)
//         {
//             Pout<< "Detected " << nCalculated << " cells changing from hole"
//                 << " to calculated. Changed these to interpolated"
//                 << endl;
//         }
//     }
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

    cellTypes_.transfer(allCellTypes);
    cellStencil_.transfer(allStencil);
    cellInterpolationWeights_.transfer(allWeights);
    cellInterpolationWeight_.transfer(allWeight);
    cellInterpolationWeight_.correctBoundaryConditions();

    DynamicList<label> interpolationCells;
    forAll(cellStencil_, cellI)
    {
        if (cellStencil_[cellI].size())
        {
            interpolationCells.append(cellI);
        }
    }
    interpolationCells_.transfer(interpolationCells);


1159
    List<Map<label>> compactMap;
1160 1161 1162 1163
    cellInterpolationMap_.reset
    (
        new mapDistribute(globalCells, cellStencil_, compactMap)
    );
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

    // Dump interpolation stencil
    if (debug)
    {
        // Dump weight
        cellInterpolationWeight_.instance() = mesh_.time().timeName();
        cellInterpolationWeight_.write();


        mkDir(mesh_.time().timePath());
        OBJstream str(mesh_.time().timePath()/"stencil2.obj");
        Info<< typeName << " : dumping to " << str.name() << endl;
        pointField cc(mesh_.cellCentres());
1177
        cellInterpolationMap().distribute(cc);
1178 1179 1180 1181 1182 1183 1184 1185 1186

        forAll(interpolationCells_, compactI)
        {
            label cellI = interpolationCells_[compactI];
            const labelList& slots = cellStencil_[cellI];

            Pout<< "cellI:" << cellI << " at:"
                << mesh_.cellCentres()[cellI]
                << " calculated from slots:" << slots
1187
                << " cc:" << UIndirectList<point>(cc, slots)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
                << " weights:" << cellInterpolationWeights_[cellI]
                << endl;

            forAll(slots, i)
            {
                const point& donorCc = cc[slots[i]];
                const point& accCc = mesh_.cellCentres()[cellI];

                str.write(linePointRef(accCc, 0.1*accCc+0.9*donorCc));
            }
        }
    }


    {
        labelList nCells(count(3, cellTypes_));
        Info<< "Overset analysis : nCells : "
            << returnReduce(cellTypes_.size(), sumOp<label>()) << nl
            << incrIndent
            << indent << "calculated   : " << nCells[CALCULATED] << nl
            << indent << "interpolated : " << nCells[INTERPOLATED] << nl
            << indent << "hole         : " << nCells[HOLE] << nl
            << decrIndent << endl;
    }

    // Tbd: detect if anything changed. Most likely it did!
    return true;
}


1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
void Foam::cellCellStencils::cellVolumeWeight::stencilWeights
(
    const point& sample,
    const pointList& donorCcs,
    scalarList& weights
) const
{
    // Inverse-distance weighting

    weights.setSize(donorCcs.size());
    scalar sum = 0.0;
    forAll(donorCcs, i)
    {
        scalar d = mag(sample-donorCcs[i]);

        if (d > ROOTVSMALL)
        {
            weights[i] = 1.0/d;
            sum += weights[i];
        }
        else
        {
            // Short circuit
            weights = 0.0;
            weights[i] = 1.0;
            return;
        }
    }
    forAll(weights, i)
    {
        weights[i] /= sum;
    }
}


1253
// ************************************************************************* //