Info<< "Reading thermophysical properties\n" << endl; Info<< "Reading field T\n" << endl; volScalarField T ( IOobject ( "T", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field p_rgh\n" << endl; volScalarField p_rgh ( IOobject ( "p_rgh", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); #include "createPhi.H" #include "readTransportProperties.H" Info<< "Creating turbulence model\n" << endl; autoPtr<incompressible::RASModel> turbulence ( incompressible::RASModel::New(U, phi, laminarTransport) ); // Kinematic density for buoyancy force volScalarField rhok ( IOobject ( "rhok", runTime.timeName(), mesh ), 1.0 - beta*(T - TRef) ); // kinematic turbulent thermal thermal conductivity m2/s Info<< "Reading field alphat\n" << endl; volScalarField alphat ( IOobject ( "alphat", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); #include "readGravitationalAcceleration.H" #include "readhRef.H" Info<< "Calculating field g.h\n" << endl; dimensionedScalar ghRef(g & (cmptMag(g.value())/mag(g.value()))*hRef); volScalarField gh("gh", (g & mesh.C()) - ghRef); surfaceScalarField ghf("ghf", (g & mesh.Cf()) - ghRef); volScalarField p ( IOobject ( "p", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), p_rgh + rhok*gh ); label pRefCell = 0; scalar pRefValue = 0.0; setRefCell ( p, p_rgh, simple.dict(), pRefCell, pRefValue ); if (p_rgh.needReference()) { p += dimensionedScalar ( "p", p.dimensions(), pRefValue - getRefCellValue(p, pRefCell) ); }