LimitedScheme.C 5 KB
Newer Older
1 2 3 4
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
5
    \\  /    A nd           | Copyright (C) 1991-2010 OpenCFD Ltd.
6 7 8 9 10
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

11 12 13 14
    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
15 16 17 18 19 20 21

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
22
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

\*---------------------------------------------------------------------------*/

#include "volFields.H"
#include "surfaceFields.H"
#include "fvcGrad.H"
#include "coupledFvPatchFields.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

template<class Type, class Limiter, template<class> class LimitFunc>
tmp<surfaceScalarField> LimitedScheme<Type, Limiter, LimitFunc>::limiter
(
    const GeometricField<Type, fvPatchField, volMesh>& phi
) const
{
    const fvMesh& mesh = this->mesh();

    tmp<surfaceScalarField> tLimiter
    (
        new surfaceScalarField
        (
            IOobject
            (
                type() + "Limiter(" + phi.name() + ')',
                mesh.time().timeName(),
                mesh
            ),
            mesh,
            dimless
        )
    );
    surfaceScalarField& lim = tLimiter();

    tmp<GeometricField<typename Limiter::phiType, fvPatchField, volMesh> >
        tlPhi = LimitFunc<Type>()(phi);

    const GeometricField<typename Limiter::phiType, fvPatchField, volMesh>&
        lPhi = tlPhi();

68 69 70 71
    tmp<GeometricField<typename Limiter::gradPhiType, fvPatchField, volMesh> >
        tgradc(fvc::grad(lPhi));
    const GeometricField<typename Limiter::gradPhiType, fvPatchField, volMesh>&
        gradc = tgradc();
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

    const surfaceScalarField& CDweights = mesh.surfaceInterpolation::weights();

    const unallocLabelList& owner = mesh.owner();
    const unallocLabelList& neighbour = mesh.neighbour();

    const vectorField& C = mesh.C();

    scalarField& pLim = lim.internalField();

    forAll(pLim, face)
    {
        label own = owner[face];
        label nei = neighbour[face];

        pLim[face] = Limiter::limiter
        (
            CDweights[face],
            this->faceFlux_[face],
            lPhi[own],
            lPhi[nei],
            gradc[own],
            gradc[nei],
            C[nei] - C[own]
        );
    }

    surfaceScalarField::GeometricBoundaryField& bLim = lim.boundaryField();

    forAll(bLim, patchi)
    {
        scalarField& pLim = bLim[patchi];

        if (bLim[patchi].coupled())
        {
            const scalarField& pCDweights = CDweights.boundaryField()[patchi];
            const scalarField& pFaceFlux =
                this->faceFlux_.boundaryField()[patchi];
            Field<typename Limiter::phiType> plPhiP =
                lPhi.boundaryField()[patchi].patchInternalField();
            Field<typename Limiter::phiType> plPhiN =
                lPhi.boundaryField()[patchi].patchNeighbourField();
            Field<typename Limiter::gradPhiType> pGradcP =
                gradc.boundaryField()[patchi].patchInternalField();
            Field<typename Limiter::gradPhiType> pGradcN =
                gradc.boundaryField()[patchi].patchNeighbourField();

            // Build the d-vectors
120
            vectorField pd =
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                mesh.Sf().boundaryField()[patchi]
               /(
                   mesh.magSf().boundaryField()[patchi]
                  *mesh.deltaCoeffs().boundaryField()[patchi]
                );

            if (!mesh.orthogonal())
            {
                pd -= mesh.correctionVectors().boundaryField()[patchi]
                    /mesh.deltaCoeffs().boundaryField()[patchi];
            }

            forAll(pLim, face)
            {
                pLim[face] = Limiter::limiter
                (
                    pCDweights[face],
                    pFaceFlux[face],
                    plPhiP[face],
                    plPhiN[face],
                    pGradcP[face],
                    pGradcN[face],
                    pd[face]
                );
            }
        }
        else
        {
            pLim = 1.0;
        }
    }

    return tLimiter;
}


// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// ************************************************************************* //