Test-momentOfInertia.C 6.85 KB
Newer Older
1
2
3
4
/*---------------------------------------------------------------------------*\
 =========                   |
 \\      /   F ield          | OpenFOAM: The Open Source CFD Toolbox
  \\    /    O peration      |
OpenFOAM bot's avatar
OpenFOAM bot committed
5
   \\  /     A nd            |
6
    \\/      M anipulation   |
OpenFOAM bot's avatar
OpenFOAM bot committed
7
8
-------------------------------------------------------------------------------
                            | Copyright (C) 2011-2017 OpenFOAM Foundation
9
10
11
12
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

13
14
15
16
    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
17
18
19
20
21
22
23

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
24
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.
25
26
27
28
29
30

Application
    momentOfInertiaTest

Description
    Calculates the inertia tensor and principal axes and moments of a
graham's avatar
graham committed
31
    test face, tetrahedron and cell.
32
33
34

\*---------------------------------------------------------------------------*/

35
36
37
#include "argList.H"
#include "Time.H"
#include "polyMesh.H"
38
39
#include "ListOps.H"
#include "face.H"
40
#include "tetPointRef.H"
41
#include "triFaceList.H"
42
43
#include "OFstream.H"
#include "meshTools.H"
44
#include "momentOfInertia.H"
45
46
47
48
49

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

using namespace Foam;

50
int main(int argc, char *argv[])
51
{
52
53
54
55
56
57
    argList::addOption
    (
        "cell",
        "label",
        "cell to use for inertia calculation, defaults to 0"
    );
58

59
60
61
    #include "setRootCase.H"
    #include "createTime.H"
    #include "createPolyMesh.H"
62
63
64

    scalar density = 1.0;

65
66
    {
        label nPts = 6;
67

68
        pointField pts(nPts);
69

70
71
72
73
74
75
        pts[0] = point(4.495, 3.717, -4.112);
        pts[1] = point(4.421, 3.932, -4.112);
        pts[2] = point(4.379, 4.053, -4.112);
        pts[3] = point(4.301, 4.026, -4.300);
        pts[4] = point(4.294, 4.024, -4.317);
        pts[5] = point(4.409, 3.687, -4.317);
76

77
        face f(identity(nPts));
78

79
        point Cf = f.centre(pts);
80

Henry Weller's avatar
Henry Weller committed
81
        tensor J = Zero;
82

83
        J = f.inertia(pts, Cf, density);
84

85
        vector eVal = eigenValues(J);
86

87
        tensor eVec = eigenVectors(J);
88

89
90
91
92
        Info<< nl << "Inertia tensor of test face " << J << nl
            << "eigenValues (principal moments) " << eVal << nl
            << "eigenVectors (principal axes) " << eVec
            << endl;
93

94
        OFstream str("momentOfInertiaTestFace.obj");
95

96
97
98
99
100
101
102
103
104
        Info<< nl << "Writing test face and scaled principal axes to "
            << str.name() << endl;

        forAll(pts, ptI)
        {
            meshTools::writeOBJ(str, pts[ptI]);
        }

        str << "l";
105

106
107
108
109
        forAll(f, fI)
        {
            str << ' ' << fI + 1;
        }
110

111
        str << " 1" << endl;
112

113
114
115
116
117
118
119
120
121
122
123
124
        scalar scale = mag(Cf - pts[f[0]])/eVal.component(findMin(eVal));

        meshTools::writeOBJ(str, Cf);
        meshTools::writeOBJ(str, Cf + scale*eVal.x()*eVec.x());
        meshTools::writeOBJ(str, Cf + scale*eVal.y()*eVec.y());
        meshTools::writeOBJ(str, Cf + scale*eVal.z()*eVec.z());

        for (label i = nPts + 1; i < nPts + 4; i++)
        {
            str << "l " << nPts + 1 << ' ' << i + 1 << endl;
        }
    }
125
126

    {
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        label nPts = 4;

        pointField pts(nPts);

        pts[0] = point(0, 0, 0);
        pts[1] = point(1, 0, 0);
        pts[2] = point(0.5, 1, 0);
        pts[3] = point(0.5, 0.5, 1);

        tetPointRef tet(pts[0], pts[1], pts[2], pts[3]);

        triFaceList tetFaces(4);

        tetFaces[0] = triFace(0, 2, 1);
        tetFaces[1] = triFace(1, 2, 3);
        tetFaces[2] = triFace(0, 3, 2);
        tetFaces[3] = triFace(0, 1, 3);

        scalar m = 0.0;
Henry Weller's avatar
Henry Weller committed
146
147
        vector cM = Zero;
        tensor J = Zero;
148

149
        momentOfInertia::massPropertiesSolid(pts, tetFaces, density, m, cM, J);
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

        vector eVal = eigenValues(J);

        tensor eVec = eigenVectors(J);

        Info<< nl
            << "Mass of tetrahedron " << m << nl
            << "Centre of mass of tetrahedron " << cM << nl
            << "Inertia tensor of tetrahedron " << J << nl
            << "eigenValues (principal moments) " << eVal << nl
            << "eigenVectors (principal axes) " << eVec
            << endl;

        OFstream str("momentOfInertiaTestTet.obj");

        Info<< nl << "Writing test tetrahedron and scaled principal axes to "
            << str.name() << endl;

        forAll(pts, ptI)
        {
            meshTools::writeOBJ(str, pts[ptI]);
        }

        forAll(tetFaces, tFI)
        {
            const triFace& f = tetFaces[tFI];

            str << "l";

            forAll(f, fI)
            {
                str << ' ' << f[fI] + 1;
            }

            str << ' ' << f[0] + 1 << endl;
        }

        scalar scale = mag(cM - pts[0])/eVal.component(findMin(eVal));

        meshTools::writeOBJ(str, cM);
        meshTools::writeOBJ(str, cM + scale*eVal.x()*eVec.x());
        meshTools::writeOBJ(str, cM + scale*eVal.y()*eVec.y());
        meshTools::writeOBJ(str, cM + scale*eVal.z()*eVec.z());

        for (label i = nPts + 1; i < nPts + 4; i++)
        {
            str << "l " << nPts + 1 << ' ' << i + 1 << endl;
        }
198
199
200
    }

    {
201
        const label celli = args.opt<label>("cell", 0);
202

Henry's avatar
Henry committed
203
        tensorField mI(momentOfInertia::meshInertia(mesh));
204

205
        tensor& J = mI[celli];
206
207

        vector eVal = eigenValues(J);
208

209
        Info<< nl
210
            << "Inertia tensor of cell " << celli << " " << J << nl
211
212
213
214
215
216
217
218
219
            << "eigenValues (principal moments) " << eVal << endl;

        J /= cmptMax(eVal);

        tensor eVec = eigenVectors(J);

        Info<< "eigenVectors (principal axes, from normalised inertia) " << eVec
            << endl;

220
        OFstream str("cell_" + name(celli) + "_inertia.obj");
221

222
        Info<< nl << "Writing scaled principal axes of cell " << celli << " to "
223
224
            << str.name() << endl;

225
        const point& cC = mesh.cellCentres()[celli];
226
227
228

        scalar scale = mag
        (
229
            (cC - mesh.faceCentres()[mesh.cells()[celli][0]])
230
231
232
233
234
235
236
237
238
239
240
241
           /eVal.component(findMin(eVal))
        );

        meshTools::writeOBJ(str, cC);
        meshTools::writeOBJ(str, cC + scale*eVal.x()*eVec.x());
        meshTools::writeOBJ(str, cC + scale*eVal.y()*eVec.y());
        meshTools::writeOBJ(str, cC + scale*eVal.z()*eVec.z());

        for (label i = 1; i < 4; i++)
        {
            str << "l " << 1 << ' ' << i + 1 << endl;
        }
242
243
244
245
246
247
248
249
250
    }

    Info<< nl << "End" << nl << endl;

    return 0;
}


// ************************************************************************* //