tensor.C 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 1991-2007 OpenCFD Ltd.
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software; you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by the
    Free Software Foundation; either version 2 of the License, or (at your
    option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM; if not, write to the Free Software Foundation,
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

\*---------------------------------------------------------------------------*/

#include "tensor.H"
#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

template<>
const char* const tensor::typeName = "tensor";

template<>
const char* tensor::componentNames[] =
{
    "xx", "xy", "xz",
    "yx", "yy", "yz",
    "zx", "zy", "zz"
};

template<>
const tensor tensor::zero
(
    0, 0, 0,
    0, 0, 0,
    0, 0, 0
);

template<>
const tensor tensor::one
(
    1, 1, 1,
    1, 1, 1,
    1, 1, 1
);


// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Return eigenvalues in ascending order of absolute values
vector eigenValues(const tensor& t)
{
    scalar i = 0;
    scalar ii = 0;
    scalar iii = 0;

    if
    (
        (
            mag(t.xy()) + mag(t.xz()) + mag(t.yx())
          + mag(t.yz()) + mag(t.zx()) + mag(t.zy())
        )
      < SMALL
    )
    {
        // diagonal matrix
        i = t.xx();
        ii = t.yy();
        iii = t.zz();
    }
    else
    {
        scalar a = -t.xx() - t.yy() - t.zz();

        scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
            - t.xy()*t.yx() - t.xz()*t.zx() - t.yz()*t.zy();

        scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.zx()
            - t.xz()*t.yx()*t.zy() + t.xz()*t.yy()*t.zx()
            + t.xy()*t.yx()*t.zz() + t.xx()*t.yz()*t.zy();

        // If there is a zero root
100
        if (mag(c) < 1.0e-100)
101
102
103
        {
            scalar disc = sqr(a) - 4*b;

104
            if (disc >= -SMALL)
105
            {
106
                scalar q = -0.5*sqrt(max(0.0, disc));
107
108

                i = 0;
109
110
                ii = -0.5*a + q;
                iii = -0.5*a - q;
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            }
            else
            {
                FatalErrorIn("eigenValues(const tensor&)")
                    << "zero and complex eigenvalues in tensor: " << t
                    << abort(FatalError);
            }
        }
        else
        {
            scalar Q = (a*a - 3*b)/9;
            scalar R = (2*a*a*a - 9*a*b + 27*c)/54;

            scalar R2 = sqr(R);
            scalar Q3 = pow3(Q);

            // Three different real roots
            if (R2 < Q3)
            {
                scalar sqrtQ = sqrt(Q);
                scalar theta = acos(R/(Q*sqrtQ));

                scalar m2SqrtQ = -2*sqrtQ;
                scalar aBy3 = a/3;

                i = m2SqrtQ*cos(theta/3) - aBy3;
                ii = m2SqrtQ*cos((theta + mathematicalConstant::twoPi)/3)
                    - aBy3;
                iii = m2SqrtQ*cos((theta - mathematicalConstant::twoPi)/3)
                    - aBy3;
            }
            else
            {
                scalar A = cbrt(R + sqrt(R2 - Q3));

                // Three equal real roots
                if (A < SMALL)
                {
                    scalar root = -a/3;
                    return vector(root, root, root);
                }
                else
                {
                    // Complex roots
                    WarningIn("eigenValues(const tensor&)")
                        << "complex eigenvalues detected for tensor: " << t
                        << endl;

                    return vector::zero;
                }
            }
        }
    }


    // Sort the eigenvalues into ascending order
    if (mag(i) > mag(ii))
    {
        Swap(i, ii);
    }

    if (mag(ii) > mag(iii))
    {
        Swap(ii, iii);
    }

    if (mag(i) > mag(ii))
    {
        Swap(i, ii);
    }

    return vector(i, ii, iii);
}


vector eigenVector(const tensor& t, const scalar lambda)
{
188
    if (mag(lambda) < SMALL)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    {
        return vector::zero;
    }

    // Construct the matrix for the eigenvector problem
    tensor A(t - lambda*I);

    // Calculate the sub-determinants of the 3 components
    scalar sd0 = A.yy()*A.zz() - A.yz()*A.zy();
    scalar sd1 = A.xx()*A.zz() - A.xz()*A.zx();
    scalar sd2 = A.xx()*A.yy() - A.xy()*A.yx();

    scalar magSd0 = mag(sd0);
    scalar magSd1 = mag(sd1);
    scalar magSd2 = mag(sd2);

    // Evaluate the eigenvector using the largest sub-determinant
    if (magSd0 > magSd1 && magSd0 > magSd2 && magSd0 > SMALL)
    {
        vector ev
        (
            1,
            (A.yz()*A.zx() - A.zz()*A.yx())/sd0,
            (A.zy()*A.yx() - A.yy()*A.zx())/sd0
        );
        ev /= mag(ev);

        return ev;
    }
    else if (magSd1 > magSd2 && magSd1 > SMALL)
    {
        vector ev
        (
            (A.xz()*A.zy() - A.zz()*A.xy())/sd1,
            1,
            (A.zx()*A.xy() - A.xx()*A.zy())/sd1
        );
        ev /= mag(ev);

        return ev;
    }
    else if (magSd2 > SMALL)
    {
        vector ev
        (
            (A.xy()*A.yz() - A.yy()*A.xz())/sd2,
            (A.yx()*A.xz() - A.xx()*A.yz())/sd2,
            1
        );
        ev /= mag(ev);

        return ev;
    }
    else
    {
        return vector::zero;
    }
}


tensor eigenVectors(const tensor& t)
{
    vector evals(eigenValues(t));

    tensor evs;
    evs.x() = eigenVector(t, evals.x());
    evs.y() = eigenVector(t, evals.y());
    evs.z() = eigenVector(t, evals.z());

    return evs;
}


// Return eigenvalues in ascending order of absolute values
vector eigenValues(const symmTensor& t)
{
    scalar i = 0;
    scalar ii = 0;
    scalar iii = 0;

    if
    (
        (
            mag(t.xy()) + mag(t.xz()) + mag(t.xy())
          + mag(t.yz()) + mag(t.xz()) + mag(t.yz())
        )
      < SMALL
    )
    {
        // diagonal matrix
        i = t.xx();
        ii = t.yy();
        iii = t.zz();
    }
    else
    {
        scalar a = -t.xx() - t.yy() - t.zz();

        scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
            - t.xy()*t.xy() - t.xz()*t.xz() - t.yz()*t.yz();

        scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.xz()
            - t.xz()*t.xy()*t.yz() + t.xz()*t.yy()*t.xz()
            + t.xy()*t.xy()*t.zz() + t.xx()*t.yz()*t.yz();

        // If there is a zero root
295
        if (mag(c) < 1.0e-100)
296
297
298
        {
            scalar disc = sqr(a) - 4*b;

299
            if (disc >= -SMALL)
300
            {
301
                scalar q = -0.5*sqrt(max(0.0, disc));
302
303

                i = 0;
304
305
                ii = -0.5*a + q;
                iii = -0.5*a - q;
306
307
308
            }
            else
            {
309
310
                FatalErrorIn("eigenValues(const tensor&)")
                    << "zero and complex eigenvalues in tensor: " << t
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                    << abort(FatalError);
            }
        }
        else
        {
            scalar Q = (a*a - 3*b)/9;
            scalar R = (2*a*a*a - 9*a*b + 27*c)/54;

            scalar R2 = sqr(R);
            scalar Q3 = pow3(Q);

            // Three different real roots
            if (R2 < Q3)
            {
                scalar sqrtQ = sqrt(Q);
                scalar theta = acos(R/(Q*sqrtQ));

                scalar m2SqrtQ = -2*sqrtQ;
                scalar aBy3 = a/3;

                i = m2SqrtQ*cos(theta/3) - aBy3;
                ii = m2SqrtQ*cos((theta + mathematicalConstant::twoPi)/3)
                    - aBy3;
                iii = m2SqrtQ*cos((theta - mathematicalConstant::twoPi)/3)
                    - aBy3;
            }
            else
            {
                scalar A = cbrt(R + sqrt(R2 - Q3));

                // Three equal real roots
                if (A < SMALL)
                {
                    scalar root = -a/3;
                    return vector(root, root, root);
                }
                else
                {
                    // Complex roots
                    WarningIn("eigenValues(const symmTensor&)")
                        << "complex eigenvalues detected for symmTensor: " << t
                        << endl;

                    return vector::zero;
                }
            }
        }
    }


    // Sort the eigenvalues into ascending order
    if (mag(i) > mag(ii))
    {
        Swap(i, ii);
    }

    if (mag(ii) > mag(iii))
    {
        Swap(ii, iii);
    }

    if (mag(i) > mag(ii))
    {
        Swap(i, ii);
    }

    return vector(i, ii, iii);
}


vector eigenVector(const symmTensor& t, const scalar lambda)
{
383
    if (mag(lambda) < SMALL)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    {
        return vector::zero;
    }

    // Construct the matrix for the eigenvector problem
    symmTensor A(t - lambda*I);

    // Calculate the sub-determinants of the 3 components
    scalar sd0 = A.yy()*A.zz() - A.yz()*A.yz();
    scalar sd1 = A.xx()*A.zz() - A.xz()*A.xz();
    scalar sd2 = A.xx()*A.yy() - A.xy()*A.xy();

    scalar magSd0 = mag(sd0);
    scalar magSd1 = mag(sd1);
    scalar magSd2 = mag(sd2);

    // Evaluate the eigenvector using the largest sub-determinant
    if (magSd0 > magSd1 && magSd0 > magSd2 && magSd0 > SMALL)
    {
        vector ev
        (
            1,
            (A.yz()*A.xz() - A.zz()*A.xy())/sd0,
            (A.yz()*A.xy() - A.yy()*A.xz())/sd0
        );
        ev /= mag(ev);

        return ev;
    }
    else if (magSd1 > magSd2 && magSd1 > SMALL)
    {
        vector ev
        (
            (A.xz()*A.yz() - A.zz()*A.xy())/sd1,
            1,
            (A.xz()*A.xy() - A.xx()*A.yz())/sd1
        );
        ev /= mag(ev);

        return ev;
    }
    else if (magSd2 > SMALL)
    {
        vector ev
        (
            (A.xy()*A.yz() - A.yy()*A.xz())/sd2,
            (A.xy()*A.xz() - A.xx()*A.yz())/sd2,
            1
        );
        ev /= mag(ev);

        return ev;
    }
    else
    {
        return vector::zero;
    }
}


tensor eigenVectors(const symmTensor& t)
{
    vector evals(eigenValues(t));

    tensor evs;
    evs.x() = eigenVector(t, evals.x());
    evs.y() = eigenVector(t, evals.y());
    evs.z() = eigenVector(t, evals.z());

    return evs;
}


// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// ************************************************************************* //