ParticleI.H 10.3 KB
Newer Older
1
2
3
4
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
Mark Olesen's avatar
Mark Olesen committed
5
    \\  /    A nd           | Copyright (C) 1991-2009 OpenCFD Ltd.
6
7
8
9
10
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

11
12
13
14
    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
15
16
17
18
19
20
21

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
22
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.
23
24
25
26

\*---------------------------------------------------------------------------*/

#include "polyMesh.H"
27
#include "wallPolyPatch.H"
28
29
30
31

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * //

template<class ParticleType>
32
inline Foam::scalar Foam::Particle<ParticleType>::lambda
33
34
35
36
37
(
    const vector& from,
    const vector& to,
    const label facei,
    const scalar stepFraction
38
) const
39
40
41
42
43
44
45
46
47
48
{
    const polyMesh& mesh = cloud_.polyMesh_;
    bool movingMesh = mesh.moving();

    if (movingMesh)
    {
        vector Sf = mesh.faceAreas()[facei];
        Sf /= mag(Sf);
        vector Cf = mesh.faceCentres()[facei];

49
        // patch interaction
50
        if (cloud_.boundaryFace(facei))
51
        {
52
53
54
55
56
            label patchi = patch(facei);
            const polyPatch& patch = mesh.boundaryMesh()[patchi];

            // move reference point for wall
            if (isA<wallPolyPatch>(patch))
57
            {
58
59
60
61
62
63
64
65
66
67
                const vector& C = mesh.cellCentres()[celli_];
                scalar CCf = mag((C - Cf) & Sf);
                // check if distance between cell centre and face centre
                // is larger than wallImpactDistance
                const ParticleType& p =
                    static_cast<const ParticleType&>(*this);
                if (CCf > p.wallImpactDistance(Sf))
                {
                    Cf -=p.wallImpactDistance(Sf)*Sf;
                }
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            }
        }

        // for a moving mesh we need to reconstruct the old
        // Sf and Cf from oldPoints (they aren't stored)

        const vectorField& oldPoints = mesh.oldPoints();

        vector Cf00 = mesh.faces()[facei].centre(oldPoints);
        vector Cf0 = Cf00 + stepFraction*(Cf - Cf00);

        vector Sf00 = mesh.faces()[facei].normal(oldPoints);

        // for layer addition Sf00 = vector::zero and we use Sf
        if (mag(Sf00) > SMALL)
        {
            Sf00 /= mag(Sf00);
        }
        else
        {
            Sf00 = Sf;
        }

        scalar magSfDiff = mag(Sf - Sf00);

        // check if the face is rotating
        if (magSfDiff > SMALL)
        {
            vector Sf0 = Sf00 + stepFraction*(Sf - Sf00);

            // find center of rotation
            vector omega = Sf0 ^ Sf;
            scalar magOmega = mag(omega);
101
            omega /= magOmega + SMALL;
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
            vector n0 = omega ^ Sf0;
            scalar lam = ((Cf - Cf0) & Sf)/(n0 & Sf);
            vector r0 = Cf0 + lam*n0;

            // solve '(p - r0) & Sfp = 0', where
            // p = from + lambda*(to - from)
            // Sfp = Sf0 + lambda*(Sf - Sf0)
            // which results in the quadratic eq.
            // a*lambda^2 + b*lambda + c = 0
            vector alpha = from - r0;
            vector beta = to - from;
            scalar a = beta & (Sf - Sf0);
            scalar b = (alpha & (Sf - Sf0)) + (beta & Sf0);
            scalar c = alpha & Sf0;

            if (mag(a) > SMALL)
            {
                // solve the second order polynomial
                scalar ap = b/a;
                scalar bp = c/a;
                scalar cp = ap*ap - 4.0*bp;

                if (cp < 0.0)
                {
                    // imaginary roots only
                    return GREAT;
                }
                else
                {
                    scalar l1 = -0.5*(ap - ::sqrt(cp));
                    scalar l2 = -0.5*(ap + ::sqrt(cp));

                    // one root is around 0-1, while
                    // the other is very large in mag
                    if (mag(l1) < mag(l2))
                    {
                        return l1;
                    }
                    else
                    {
                        return l2;
                    }
                }
            }
            else
            {
                // when a==0, solve the first order polynomial
                return (-c/b);
            }
        }
        else // no rotation
        {
            vector alpha = from - Cf0;
            vector beta = to - from - (Cf - Cf0);
            scalar lambdaNominator = alpha & Sf;
            scalar lambdaDenominator = beta & Sf;

            // check if trajectory is parallel to face
            if (mag(lambdaDenominator) < SMALL)
            {
                if (lambdaDenominator < 0.0)
                {
                    lambdaDenominator = -SMALL;
                }
                else
                {
                    lambdaDenominator = SMALL;
                }
            }

            return (-lambdaNominator/lambdaDenominator);
        }
    }
    else
    {
        // mesh is static and stepFraction is not needed
        return lambda(from, to, facei);
    }
}


template<class ParticleType>
184
inline Foam::scalar Foam::Particle<ParticleType>::lambda
185
186
187
188
(
    const vector& from,
    const vector& to,
    const label facei
189
) const
190
191
192
193
194
195
196
{
    const polyMesh& mesh = cloud_.polyMesh_;

    vector Sf = mesh.faceAreas()[facei];
    Sf /= mag(Sf);
    vector Cf = mesh.faceCentres()[facei];

197
    // patch interaction
198
    if (cloud_.boundaryFace(facei))
199
    {
200
        label patchi = patch(facei);
201
202
        const polyPatch& patch = mesh.boundaryMesh()[patchi];

203
        // move reference point for wall
204
        if (isA<wallPolyPatch>(patch))
205
        {
206
207
208
209
            const vector& C = mesh.cellCentres()[celli_];
            scalar CCf = mag((C - Cf) & Sf);
            // check if distance between cell centre and face centre
            // is larger than wallImpactDistance
graham's avatar
graham committed
210

211
212
            const ParticleType& p = static_cast<const ParticleType&>(*this);
            if (CCf > p.wallImpactDistance(Sf))
213
            {
graham's avatar
graham committed
214
                Cf -= p.wallImpactDistance(Sf)*Sf;
215
            }
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        }
    }

    scalar lambdaNominator = (Cf - from) & Sf;
    scalar lambdaDenominator = (to - from) & Sf;

    // check if trajectory is parallel to face
    if (mag(lambdaDenominator) < SMALL)
    {
        if (lambdaDenominator < 0.0)
        {
            lambdaDenominator = -SMALL;
        }
        else
        {
            lambdaDenominator = SMALL;
        }
    }

    return lambdaNominator/lambdaDenominator;
}


template<class ParticleType>
240
inline bool Foam::Particle<ParticleType>::inCell() const
241
{
mattijs's avatar
mattijs committed
242
243
    DynamicList<label>& faces = cloud_.labels_;
    findFaces(position_, faces);
244
245
246
247
248
249

    return (!faces.size());
}


template<class ParticleType>
250
inline bool Foam::Particle<ParticleType>::inCell
251
252
253
254
(
    const vector& position,
    const label celli,
    const scalar stepFraction
255
) const
256
{
mattijs's avatar
mattijs committed
257
258
    DynamicList<label>& faces = cloud_.labels_;
    findFaces(position, celli, stepFraction, faces);
259
260
261
262
263
264
265
266

    return (!faces.size());
}


// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //

template<class ParticleType>
267
inline Foam::Particle<ParticleType>::trackData::trackData
268
269
270
271
272
273
274
(
    Cloud<ParticleType>& cloud
)
:
    cloud_(cloud)
{}

275

276
template<class ParticleType>
277
278
inline Foam::Cloud<ParticleType>&
Foam::Particle<ParticleType>::trackData::cloud()
279
280
281
282
283
284
285
286
{
    return cloud_;
}


// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //

template<class ParticleType>
287
288
inline const Foam::Cloud<ParticleType>&
Foam::Particle<ParticleType>::cloud() const
289
290
291
292
293
294
{
    return cloud_;
}


template<class ParticleType>
295
inline const Foam::vector& Foam::Particle<ParticleType>::position() const
296
297
298
299
300
301
{
    return position_;
}


template<class ParticleType>
302
inline Foam::vector& Foam::Particle<ParticleType>::position()
303
304
305
306
307
308
{
    return position_;
}


template<class ParticleType>
309
inline Foam::label Foam::Particle<ParticleType>::cell() const
310
311
312
313
{
    return celli_;
}

314

315
template<class ParticleType>
316
inline Foam::label& Foam::Particle<ParticleType>::cell()
317
318
319
320
{
    return celli_;
}

321
322

template<class ParticleType>
323
inline Foam::label Foam::Particle<ParticleType>::face() const
324
325
326
327
328
329
{
    return facei_;
}


template<class ParticleType>
330
inline bool Foam::Particle<ParticleType>::onBoundary() const
331
332
333
334
335
336
{
    return facei_ != -1 && facei_ >= cloud_.pMesh().nInternalFaces();
}


template<class ParticleType>
337
inline Foam::scalar& Foam::Particle<ParticleType>::stepFraction()
338
339
340
341
342
343
{
    return stepFraction_;
}


template<class ParticleType>
344
inline Foam::scalar Foam::Particle<ParticleType>::stepFraction() const
345
346
347
348
349
350
{
    return stepFraction_;
}


template<class ParticleType>
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
inline Foam::label Foam::Particle<ParticleType>::origProc() const
{
    return origProc_;
}


template<class ParticleType>
inline Foam::label Foam::Particle<ParticleType>::origId() const
{
    return origId_;
}


template<class ParticleType>
inline bool Foam::Particle<ParticleType>::softImpact() const
366
367
368
369
370
{
    return false;
}


371
template<class ParticleType>
372
inline Foam::scalar Foam::Particle<ParticleType>::currentTime() const
373
374
375
{
    return
        cloud_.pMesh().time().value()
graham's avatar
graham committed
376
      + stepFraction_*cloud_.pMesh().time().deltaTValue();
377
378
379
}


380
template<class ParticleType>
381
inline Foam::label Foam::Particle<ParticleType>::patch(const label facei) const
382
383
384
385
386
387
{
    return cloud_.facePatch(facei);
}


template<class ParticleType>
388
inline Foam::label Foam::Particle<ParticleType>::patchFace
389
390
391
392
393
394
395
396
397
398
(
    const label patchi,
    const label facei
) const
{
    return cloud_.patchFace(patchi, facei);
}


template<class ParticleType>
399
400
inline Foam::scalar
Foam::Particle<ParticleType>::wallImpactDistance(const vector&) const
401
402
403
404
405
406
{
    return 0.0;
}


template<class ParticleType>
407
inline Foam::label Foam::Particle<ParticleType>::faceInterpolation() const
408
409
410
411
412
413
{
    return facei_;
}


// ************************************************************************* //