meshRefinementGapRefine.C 54.9 KB
Newer Older
1
2
3
4
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
OpenFOAM bot's avatar
OpenFOAM bot committed
5
    \\  /    A nd           | www.openfoam.com
OpenFOAM bot's avatar
OpenFOAM bot committed
6
7
     \\/     M anipulation  |
-------------------------------------------------------------------------------
OpenFOAM bot's avatar
OpenFOAM bot committed
8
    Copyright (C) 2015 OpenFOAM Foundation
9
    Copyright (C) 2015-2020 OpenCFD Ltd.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "meshRefinement.H"
#include "Time.H"
#include "refinementSurfaces.H"
#include "refinementFeatures.H"
#include "shellSurfaces.H"
#include "triSurfaceMesh.H"
#include "treeDataCell.H"
#include "searchableSurfaces.H"
#include "DynamicField.H"
38
39
40
41
#include "transportData.H"
#include "FaceCellWave.H"
#include "volFields.H"
#include "zeroGradientFvPatchFields.H"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * //

Foam::label Foam::meshRefinement::markSurfaceGapRefinement
(
    const scalar planarCos,

    const label nAllowRefine,
    const labelList& neiLevel,
    const pointField& neiCc,

    labelList& refineCell,
    label& nRefine
) const
{
    const labelList& cellLevel = meshCutter_.cellLevel();
    const pointField& cellCentres = mesh_.cellCentres();

    // Get the gap level for the shells
    const labelList maxLevel(shells_.maxGapLevel());

    label oldNRefine = nRefine;

    if (max(maxLevel) > 0)
    {
        // Use cached surfaceIndex_ to detect if any intersection. If so
        // re-intersect to determine level wanted.

        // Collect candidate faces
        // ~~~~~~~~~~~~~~~~~~~~~~~

        labelList testFaces(getRefineCandidateFaces(refineCell));

        // Collect segments
        // ~~~~~~~~~~~~~~~~

        pointField start(testFaces.size());
        pointField end(testFaces.size());
80
81
82
83
84
85
86
87
88
89
90
91
        {
            labelList minLevel(testFaces.size());
            calcCellCellRays
            (
                neiCc,
                neiLevel,
                testFaces,
                start,
                end,
                minLevel
            );
        }
92
93
94
95


        // Collect cells to test for inside/outside in shell
        labelList cellToCompact(mesh_.nCells(), -1);
96
        labelList bFaceToCompact(mesh_.nBoundaryFaces(), -1);
97
        labelList gapShell;
98
        List<FixedList<label, 3>> shellGapInfo;
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        List<volumeType> shellGapMode;
        {
            DynamicField<point> compactToCc(mesh_.nCells()/10);
            DynamicList<label> compactToLevel(compactToCc.capacity());
            forAll(testFaces, i)
            {
                label faceI = testFaces[i];
                label own = mesh_.faceOwner()[faceI];
                if (cellToCompact[own] == -1)
                {
                    cellToCompact[own] = compactToCc.size();
                    compactToCc.append(cellCentres[own]);
                    compactToLevel.append(cellLevel[own]);
                }
                if (mesh_.isInternalFace(faceI))
                {
                    label nei = mesh_.faceNeighbour()[faceI];
                    if (cellToCompact[nei] == -1)
                    {
                        cellToCompact[nei] = compactToCc.size();
                        compactToCc.append(cellCentres[nei]);
                        compactToLevel.append(cellLevel[nei]);
                    }
                }
                else
                {
                    label bFaceI = faceI - mesh_.nInternalFaces();
                    if (bFaceToCompact[bFaceI] == -1)
                    {
                        bFaceToCompact[bFaceI] = compactToCc.size();
                        compactToCc.append(neiCc[bFaceI]);
                        compactToLevel.append(neiLevel[bFaceI]);
                    }
                }
            }

            shells_.findHigherGapLevel
            (
                compactToCc,
                compactToLevel,
139
140

                gapShell,
141
142
143
144
145
146
                shellGapInfo,
                shellGapMode
            );
        }


147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        //const fileName dir(mesh_.time().path()/timeName());
        //if (debug)
        //{
        //    mkDir(dir);
        //    OBJstream insideStr(dir/"insideShell.obj");
        //    OBJstream outsideStr(dir/"outsideShell.obj");
        //    Pout<< "Writing points to:" << nl
        //        << "    inside : " << insideStr.name() << nl
        //        << "    outside: " << outsideStr.name() << nl
        //        << endl;
        //
        //    forAll(cellToCompact, celli)
        //    {
        //        const label compacti = cellToCompact[celli];
        //
        //        if (compacti != -1)
        //        {
        //            if (gapShell[compacti] != -1)
        //            {
        //                insideStr.write(mesh_.cellCentres()[celli]);
        //            }
        //            else
        //            {
        //                outsideStr.write(mesh_.cellCentres()[celli]);
        //            }
        //        }
        //    }
        //    forAll(bFaceToCompact, bFacei)
        //    {
        //        const label compacti = bFaceToCompact[bFacei];
        //        if (compacti != -1)
        //        {
        //            if (gapShell[compacti] != -1)
        //            {
        //                insideStr.write(neiCc[bFacei]);
        //            }
        //            else
        //            {
        //                outsideStr.write(neiCc[bFacei]);
        //            }
        //        }
        //    }
        //}


192
        const List<FixedList<label, 3>>& extendedGapLevel =
193
194
195
            surfaces_.extendedGapLevel();
        const List<volumeType>& extendedGapMode =
            surfaces_.extendedGapMode();
196
        const boolList& extendedGapSelf = surfaces_.gapSelf();
197

198
199
200
201
        labelList ccSurface1;
        List<pointIndexHit> ccHit1;
        labelList ccRegion1;
        vectorField ccNormal1;
202
        {
203
204
205
206
            labelList ccSurface2;
            List<pointIndexHit> ccHit2;
            labelList ccRegion2;
            vectorField ccNormal2;
207
208
209
210
211
212
213

            surfaces_.findNearestIntersection
            (
                identity(surfaces_.surfaces().size()),
                start,
                end,

214
215
216
217
                ccSurface1,
                ccHit1,
                ccRegion1,
                ccNormal1,
218

219
220
221
222
                ccSurface2,
                ccHit2,
                ccRegion2,
                ccNormal2
223
224
225
            );
        }

226
227
228
229
230
231
        start.clear();
        end.clear();

        DynamicField<point> rayStart(2*ccSurface1.size());
        DynamicField<point> rayEnd(2*ccSurface1.size());
        DynamicField<scalar> gapSize(2*ccSurface1.size());
232

233
234
235
        DynamicField<point> rayStart2(2*ccSurface1.size());
        DynamicField<point> rayEnd2(2*ccSurface1.size());
        DynamicField<scalar> gapSize2(2*ccSurface1.size());
236

237
238
        DynamicList<label> cellMap(2*ccSurface1.size());
        DynamicList<label> compactMap(2*ccSurface1.size());
239

240
        forAll(ccSurface1, i)
241
        {
242
            label surfI = ccSurface1[i];
243
244
245

            if (surfI != -1)
            {
246
247
                label globalRegionI =
                    surfaces_.globalRegion(surfI, ccRegion1[i]);
248
249

                label faceI = testFaces[i];
250
                const point& surfPt = ccHit1[i].hitPoint();
251
252

                label own = mesh_.faceOwner()[faceI];
253
254
255
256
257
                if
                (
                    cellToCompact[own] != -1
                 && shellGapInfo[cellToCompact[own]][2] > 0
                )
258
259
260
261
262
263
264
265
266
267
268
                {
                    // Combine info from shell and surface
                    label compactI = cellToCompact[own];
                    FixedList<label, 3> gapInfo;
                    volumeType gapMode;
                    mergeGapInfo
                    (
                        shellGapInfo[compactI],
                        shellGapMode[compactI],
                        extendedGapLevel[globalRegionI],
                        extendedGapMode[globalRegionI],
269

270
271
272
273
274
                        gapInfo,
                        gapMode
                    );

                    const point& cc = cellCentres[own];
275
                    label nRays = generateRays
276
277
278
                    (
                        false,
                        surfPt,
279
                        ccNormal1[i],
280
281
                        gapInfo,
                        gapMode,
282
                        surfPt+((cc-surfPt)&ccNormal1[i])*ccNormal1[i],
283
284
                        cellLevel[own],

285
286
287
                        rayStart,
                        rayEnd,
                        gapSize,
288

289
290
291
292
293
                        rayStart2,
                        rayEnd2,
                        gapSize2
                    );
                    for (label j = 0; j < nRays; j++)
294
                    {
295
296
                        cellMap.append(own);
                        compactMap.append(i);
297
298
299
300
301
                    }
                }
                if (mesh_.isInternalFace(faceI))
                {
                    label nei = mesh_.faceNeighbour()[faceI];
302
303
304
305
306
                    if
                    (
                        cellToCompact[nei] != -1
                     && shellGapInfo[cellToCompact[nei]][2] > 0
                    )
307
308
309
310
311
312
313
314
315
316
317
                    {
                        // Combine info from shell and surface
                        label compactI = cellToCompact[nei];
                        FixedList<label, 3> gapInfo;
                        volumeType gapMode;
                        mergeGapInfo
                        (
                            shellGapInfo[compactI],
                            shellGapMode[compactI],
                            extendedGapLevel[globalRegionI],
                            extendedGapMode[globalRegionI],
318

319
320
321
322
323
                            gapInfo,
                            gapMode
                        );

                        const point& cc = cellCentres[nei];
324
                        label nRays = generateRays
325
326
327
                        (
                            false,
                            surfPt,
328
                            ccNormal1[i],
329
330
                            gapInfo,
                            gapMode,
331
                            surfPt+((cc-surfPt)&ccNormal1[i])*ccNormal1[i],
332
333
                            cellLevel[nei],

334
335
336
                            rayStart,
                            rayEnd,
                            gapSize,
337

338
339
340
341
342
                            rayStart2,
                            rayEnd2,
                            gapSize2
                        );
                        for (label j = 0; j < nRays; j++)
343
                        {
344
345
                            cellMap.append(nei);
                            compactMap.append(i);
346
347
348
349
350
                        }
                    }
                }
                else
                {
351
352
353
354
                    // Note: on coupled face. What cell are we going to
                    // refine? We've got the neighbouring cell centre
                    // and level but we cannot mark it for refinement on
                    // this side...
355
356
                    label bFaceI = faceI - mesh_.nInternalFaces();

357
358
359
360
361
                    if
                    (
                        bFaceToCompact[bFaceI] != -1
                     && shellGapInfo[bFaceToCompact[bFaceI]][2] > 0
                    )
362
363
364
365
366
367
368
369
370
371
372
                    {
                        // Combine info from shell and surface
                        label compactI = bFaceToCompact[bFaceI];
                        FixedList<label, 3> gapInfo;
                        volumeType gapMode;
                        mergeGapInfo
                        (
                            shellGapInfo[compactI],
                            shellGapMode[compactI],
                            extendedGapLevel[globalRegionI],
                            extendedGapMode[globalRegionI],
373

374
375
376
377
378
                            gapInfo,
                            gapMode
                        );

                        const point& cc = neiCc[bFaceI];
379
                        label nRays = generateRays
380
381
382
                        (
                            false,
                            surfPt,
383
                            ccNormal1[i],
384
385
                            gapInfo,
                            gapMode,
386
                            surfPt+((cc-surfPt)&ccNormal1[i])*ccNormal1[i],
387
388
                            neiLevel[bFaceI],

389
390
391
                            rayStart,
                            rayEnd,
                            gapSize,
392

393
394
395
396
397
                            rayStart2,
                            rayEnd2,
                            gapSize2
                        );
                        for (label j = 0; j < nRays; j++)
398
                        {
399
400
                            cellMap.append(-1); // See above.
                            compactMap.append(i);
401
402
403
404
405
406
                        }
                    }
                }
            }
        }

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        Info<< "Shooting " << returnReduce(rayStart.size(), sumOp<label>())
            << " rays from " << returnReduce(testFaces.size(), sumOp<label>())
            << " intersected faces" << endl;

        rayStart.shrink();
        rayEnd.shrink();
        gapSize.shrink();

        rayStart2.shrink();
        rayEnd2.shrink();
        gapSize2.shrink();

        cellMap.shrink();
        compactMap.shrink();

        testFaces.clear();
        ccSurface1.clear();
        ccHit1.clear();
        ccRegion1.clear();
        ccNormal1 = UIndirectList<vector>(ccNormal1, compactMap)();


        // Do intersections in pairs
        labelList surf1;
        List<pointIndexHit> hit1;
        vectorField normal1;
433
434
        surfaces_.findNearestIntersection
        (
435
436
437
438
439
            rayStart,
            rayEnd,
            surf1,
            hit1,
            normal1
440
441
        );

442
443
444
445
446
447
448
449
450
451
452
        labelList surf2;
        List<pointIndexHit> hit2;
        vectorField normal2;
        surfaces_.findNearestIntersection
        (
            rayStart2,
            rayEnd2,
            surf2,
            hit2,
            normal2
        );
453

454
        forAll(surf1, i)
455
        {
456
457
            // Combine selfProx of shell and surfaces.
            // Ignore regions for now
458
            const label cellI = cellMap[i];
459

460
461
            const label shelli =
            (
462
                (cellI != -1 && cellToCompact[cellI] != -1)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
              ? gapShell[cellToCompact[cellI]]
              : -1
            );

            bool selfProx = true;
            if (shelli != -1)
            {
                selfProx = shells_.gapSelf()[shelli][0];
            }
            if (surf1[i] != -1 && selfProx)
            {
                const label globalRegioni = surfaces_.globalRegion(surf1[i], 0);
                selfProx = extendedGapSelf[globalRegioni];
            }

            if
            (
                surf1[i] != -1
             && surf2[i] != -1
             && (surf2[i] != surf1[i] || selfProx)
            )
484
485
            {
                // Found intersection with surface. Check opposite normal.
486
487
488
489
490
491
492
493
494
                if
                (
                    cellI != -1
                 && (mag(normal1[i]&normal2[i]) > planarCos)
                 && (
                        magSqr(hit1[i].hitPoint()-hit2[i].hitPoint())
                      < Foam::sqr(gapSize[i])
                    )
                )
495
496
497
498
499
                {
                    if
                    (
                       !markForRefine
                        (
500
                            surf1[i],
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
                            nAllowRefine,
                            refineCell[cellI],
                            nRefine
                        )
                    )
                    {
                        break;
                    }
                }
            }
        }

        if
        (
            returnReduce(nRefine, sumOp<label>())
          > returnReduce(nAllowRefine, sumOp<label>())
        )
        {
            Info<< "Reached refinement limit." << endl;
        }
    }

    return returnReduce(nRefine-oldNRefine, sumOp<label>());
}


//Foam::meshRefinement::findNearestOppositeOp::findNearestOppositeOp
//(
//    const indexedOctree<treeDataTriSurface>& tree,
//    const point& oppositePoint,
//    const vector& oppositeNormal,
//    const scalar minCos
//)
//:
//    tree_(tree),
//    oppositePoint_(oppositePoint),
//    oppositeNormal_(oppositeNormal),
//    minCos_(minCos)
//{}
//
//
//void Foam::meshRefinement::findNearestOppositeOp::operator()
//(
//    const labelUList& indices,
//    const point& sample,
//    scalar& nearestDistSqr,
//    label& minIndex,
//    point& nearestPoint
//) const
//{
//    const treeDataTriSurface& shape = tree_.shapes();
//    const triSurface& patch = shape.patch();
//    const pointField& points = patch.points();
//
//    forAll(indices, i)
//    {
//        const label index = indices[i];
//        const labelledTri& f = patch[index];
//
//        pointHit nearHit = f.nearestPoint(sample, points);
//        scalar distSqr = sqr(nearHit.distance());
//
//        if (distSqr < nearestDistSqr)
//        {
//            // Nearer. Check if
//            // - a bit way from other hit
//            // - in correct search cone
//            vector d(nearHit.rawPoint()-oppositePoint_);
//            scalar normalDist(d&oppositeNormal_);
//
//            if (normalDist > Foam::sqr(SMALL) && normalDist/mag(d) > minCos_)
//            {
//                nearestDistSqr = distSqr;
//                minIndex = index;
//                nearestPoint = nearHit.rawPoint();
//            }
//        }
//    }
//}
//
//
//void Foam::meshRefinement::searchCone
//(
//    const label surfI,
//    labelList& nearMap,                 // cells
//    scalarField& nearGap,               // gap size
//    List<pointIndexHit>& nearInfo,      // nearest point on surface
//    List<pointIndexHit>& oppositeInfo   // detected point on gap (or miss)
//) const
//{
//    const labelList& cellLevel = meshCutter_.cellLevel();
//    const pointField& cellCentres = mesh_.cellCentres();
//    const scalar edge0Len = meshCutter_.level0EdgeLength();
//
//    const labelList& surfaceIndices = surfaces_.surfaces();
596
//    const List<FixedList<label, 3>>& extendedGapLevel =
597
598
599
600
601
602
603
604
605
606
607
//        surfaces_.extendedGapLevel();
//    const List<volumeType>& extendedGapMode = surfaces_.extendedGapMode();
//
//
//    label geomI = surfaceIndices[surfI];
//    const searchableSurface& geom = surfaces_.geometry()[geomI];
//
//    const triSurfaceMesh& s = refCast<const triSurfaceMesh>(geom);
//    const indexedOctree<treeDataTriSurface>& tree = s.tree();
//
//
608
//    const scalar searchCos = Foam::cos(degToRad(30.0));
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
//
//    // Normals for ray shooting and inside/outside detection
//    vectorField nearNormal;
//    geom.getNormal(nearInfo, nearNormal);
//    // Regions
//    labelList nearRegion;
//    geom.getRegion(nearInfo, nearRegion);
//
//
//    // Now loop over all near points and search in the half cone
//    labelList map(nearInfo.size());
//    label compactI = 0;
//
//    oppositeInfo.setSize(nearInfo.size());
//
//    forAll(nearInfo, i)
//    {
//        label globalRegionI =
//            surfaces_.globalRegion(surfI, nearRegion[i]);
//
//        // Get updated gap information now we have the region
//        label nGapCells = extendedGapLevel[globalRegionI][0];
//        label minLevel = extendedGapLevel[globalRegionI][1];
//        label maxLevel = extendedGapLevel[globalRegionI][2];
//        volumeType mode = extendedGapMode[globalRegionI];
//
//        label cellI = nearMap[i];
//        label cLevel = cellLevel[cellI];
//
//        if (cLevel >= minLevel && cLevel < maxLevel)
//        {
640
//            scalar cellSize = edge0Len/pow(2.0, cLevel);
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
//
//            // Update gap size
//            nearGap[i] = nGapCells*cellSize;
//
//            const point& nearPt = nearInfo[i].hitPoint();
//            vector v(cellCentres[cellI]-nearPt);
//            scalar magV = mag(v);
//
//            // Like with ray shooting we want to
//            // - find triangles up to nearGap away on the wanted side of the
//            //   surface
//            // - find triangles up to 0.5*cellSize away on the unwanted side
//            //   of the surface. This is for cells straddling the surface
//            //   where
//            //   the cell centre might be on the wrong side of the surface
//
//            // Tbd: check that cell centre is inbetween the gap hits
//            // (only if the cell is far enough away)
//
//            scalar posNormalSize = 0.0;
//            scalar negNormalSize = 0.0;
//
//            if (mode == volumeType::OUTSIDE)
//            {
//                posNormalSize = nearGap[i];
//                if (magV < 0.5*cellSize)
//                {
//                    negNormalSize = 0.5*cellSize;
//                }
//            }
//            else if (mode == volumeType::INSIDE)
//            {
//                if (magV < 0.5*cellSize)
//                {
//                    posNormalSize = 0.5*cellSize;
//                }
//                negNormalSize = nearGap[i];
//            }
//            else
//            {
//                posNormalSize = nearGap[i];
//                negNormalSize = nearGap[i];
//            }
//
//            // Test with positive normal
//            oppositeInfo[compactI] = tree.findNearest
//            (
//                nearPt,
//                sqr(posNormalSize),
//                findNearestOppositeOp
//                (
//                    tree,
//                    nearPt,
//                    nearNormal[i],
//                    searchCos
//                )
//            );
//
//            if (oppositeInfo[compactI].hit())
//            {
//                map[compactI++] = i;
//            }
//            else
//            {
//                // Test with negative normal
//                oppositeInfo[compactI] = tree.findNearest
//                (
//                    nearPt,
//                    sqr(negNormalSize),
//                    findNearestOppositeOp
//                    (
//                        tree,
//                        nearPt,
//                        -nearNormal[i],
//                        searchCos
//                    )
//                );
//
//                if (oppositeInfo[compactI].hit())
//                {
//                    map[compactI++] = i;
//                }
//            }
//        }
//    }
//
//    Info<< "Selected " << returnReduce(compactI, sumOp<label>())
//        << " hits on the correct side out of "
//        << returnReduce(map.size(), sumOp<label>()) << endl;
//    map.setSize(compactI);
//    oppositeInfo.setSize(compactI);
//
733
//    nearMap = labelUIndList(nearMap, map)();
734
735
736
737
738
//    nearGap = UIndirectList<scalar>(nearGap, map)();
//    nearInfo = UIndirectList<pointIndexHit>(nearInfo, map)();
//    nearNormal = UIndirectList<vector>(nearNormal, map)();
//
//    // Exclude hits which aren't opposite enough. E.g. you might find
Andrew Heather's avatar
Andrew Heather committed
739
//    // a point on a perpendicular wall - but this does not constitute a gap.
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
//    vectorField oppositeNormal;
//    geom.getNormal(oppositeInfo, oppositeNormal);
//
//    compactI = 0;
//    forAll(oppositeInfo, i)
//    {
//        if ((nearNormal[i] & oppositeNormal[i]) < -0.707)
//        {
//            map[compactI++] = i;
//        }
//    }
//
//    Info<< "Selected " << returnReduce(compactI, sumOp<label>())
//        << " hits opposite the nearest out of "
//        << returnReduce(map.size(), sumOp<label>()) << endl;
//    map.setSize(compactI);
//
757
//    nearMap = labelUIndList(nearMap, map)();
758
759
760
761
762
763
//    nearGap = UIndirectList<scalar>(nearGap, map)();
//    nearInfo = UIndirectList<pointIndexHit>(nearInfo, map)();
//    oppositeInfo = UIndirectList<pointIndexHit>(oppositeInfo, map)();
//}


764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
Foam::label Foam::meshRefinement::generateRays
(
    const point& nearPoint,
    const vector& nearNormal,
    const FixedList<label, 3>& gapInfo,
    const volumeType& mode,

    const label cLevel,

    DynamicField<point>& start,
    DynamicField<point>& end
) const
{
    label nOldRays = start.size();

779
    if (cLevel >= gapInfo[1] && cLevel < gapInfo[2] && gapInfo[0] > 0)
780
    {
781
        scalar cellSize = meshCutter_.level0EdgeLength()/pow(2.0, cLevel);
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

        // Calculate gap size
        scalar nearGap = gapInfo[0]*cellSize;

        const vector& n = nearNormal;

        // Situation 'C' above: cell too close. Use surface
        // -normal and -point to shoot rays

        if (mode == volumeType::OUTSIDE)
        {
            start.append(nearPoint+1e-6*n);
            end.append(nearPoint+nearGap*n);
        }
        else if (mode == volumeType::INSIDE)
        {
            start.append(nearPoint-1e-6*n);
            end.append(nearPoint-nearGap*n);
        }
        else if (mode == volumeType::MIXED)
        {
            start.append(nearPoint+1e-6*n);
            end.append(nearPoint+nearGap*n);

            start.append(nearPoint-1e-6*n);
            end.append(nearPoint-nearGap*n);
        }
    }

    return start.size()-nOldRays;
}


Foam::label Foam::meshRefinement::generateRays
816
817
818
819
820
821
822
823
824
825
826
(
    const bool useSurfaceNormal,

    const point& nearPoint,
    const vector& nearNormal,
    const FixedList<label, 3>& gapInfo,
    const volumeType& mode,

    const point& cc,
    const label cLevel,

827
828
829
830
831
832
833
    DynamicField<point>& start,
    DynamicField<point>& end,
    DynamicField<scalar>& gapSize,

    DynamicField<point>& start2,
    DynamicField<point>& end2,
    DynamicField<scalar>& gapSize2
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
) const
{
    // We want to handle the following cases:
    // - surface: small gap (marked with 'surface'). gap might be
    //            on inside or outside of surface.
    // - A: cell well inside the gap.
    // - B: cell well outside the gap.
    // - C: cell straddling the gap. cell centre might be inside
    //      or outside
    //
    //       +---+
    //       | B |
    //       +---+
    //
    //            +------+
    //            |      |
    //            |   C  |
    //    --------|------|----surface
    //            +------+
    //
    //        +---+
    //        | A |
    //        +---+
    //
    //
    //    --------------------surface
    //
    // So:
    // - find nearest point on surface
    // - in situation A,B decide if on wanted side of surface
    // - detect if locally a gap (and the cell inside the gap) by
    //   shooting a ray from the point on the surface in the direction
    //   of
    //   - A,B: the cell centre
    //   - C: the surface normal and/or negative surface normal
    //   and see we hit anything
    //
    // Variations of this scheme:
    // - always shoot in the direction of the surface normal. This needs
    //   then an additional check to make sure the cell centre is
    //   somewhere inside the gap
    // - instead of ray shooting use a 'constrained' nearest search
    //   by e.g. looking inside a search cone (implemented in searchCone).
    //   The problem with this constrained nearest is that it still uses
    //   the absolute nearest point on each triangle and only afterwards
    //   checks if it is inside the search cone.


    // Decide which near points are good:
    // - with updated minLevel and maxLevel and nearGap make sure
    //   the cell is still a candidate
    //   NOTE: inside the gap the nearest point on the surface will
    //         be HALF the gap size - otherwise we would have found
    //         a point on the opposite side
    // - if the mode is both sides
    // - or if the hit is inside the current cell (situation 'C',
    //   magV < 0.5cellSize)
    // - or otherwise if on the correct side

893
    label nOldRays = start.size();
894

895
    if (cLevel >= gapInfo[1] && cLevel < gapInfo[2] && gapInfo[0] > 0)
896
    {
897
        scalar cellSize = meshCutter_.level0EdgeLength()/pow(2.0, cLevel);
898
899
900
901
902
903
904
905
906
907
908
909
910

        // Calculate gap size
        scalar nearGap = gapInfo[0]*cellSize;

        // Distance to nearest
        vector v(cc-nearPoint);
        scalar magV = mag(v);

        if (useSurfaceNormal || magV < 0.5*cellSize)
        {
            const vector& n = nearNormal;

            // Situation 'C' above: cell too close. Use surface
911
            // -normal and -point to shoot rays
912
913
914

            if (mode == volumeType::OUTSIDE)
            {
915
916
917
918
919
920
921
                start.append(nearPoint+1e-6*n);
                end.append(nearPoint+nearGap*n);
                gapSize.append(nearGap);
                // Second vector so we get pairs of intersections
                start2.append(nearPoint+1e-6*n);
                end2.append(nearPoint-1e-6*n);
                gapSize2.append(gapSize.last());
922
923
924
            }
            else if (mode == volumeType::INSIDE)
            {
925
926
927
928
929
930
931
                start.append(nearPoint-1e-6*n);
                end.append(nearPoint-nearGap*n);
                gapSize.append(nearGap);
                // Second vector so we get pairs of intersections
                start2.append(nearPoint-1e-6*n);
                end2.append(nearPoint+1e-6*n);
                gapSize2.append(gapSize.last());
932
933
934
            }
            else if (mode == volumeType::MIXED)
            {
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
                // Do both rays:
                // Outside
                {
                    start.append(nearPoint+1e-6*n);
                    end.append(nearPoint+nearGap*n);
                    gapSize.append(nearGap);
                    // Second vector so we get pairs of intersections
                    start2.append(nearPoint+1e-6*n);
                    end2.append(nearPoint-1e-6*n);
                    gapSize2.append(gapSize.last());
                }
                // Inside
                {
                    start.append(nearPoint-1e-6*n);
                    end.append(nearPoint-nearGap*n);
                    gapSize.append(nearGap);
                    // Second vector so we get pairs of intersections
                    start2.append(nearPoint-1e-6*n);
                    end2.append(nearPoint+1e-6*n);
                    gapSize2.append(gapSize.last());
                }
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
            }
        }
        else
        {
            // Situation 'A' or 'B' above: cell well away. Test if
            // cell on correct side of surface and shoot ray through
            // cell centre. Note: no need to shoot ray in other
            // direction since we're trying to detect cell inside
            // the gap.

            scalar s = (v&nearNormal);

            if
            (
                (mode == volumeType::MIXED)
             || (mode == volumeType::OUTSIDE && s > SMALL)
             || (mode == volumeType::INSIDE && s < -SMALL)
            )
            {
975
                //// Use single vector through cell centre
976
977
978
979
980
981
982
983
984
985
986
                //vector n(v/(magV+ROOTVSMALL));
                //
                //start.append(cc);
                //end.append(cc+nearGap*n);
                //gapSize.append(nearGap);
                //
                //start2.append(cc);
                //end2.append(cc-nearGap*n);
                //gapSize2.append(nearGap);


987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
                //// Shoot some rays through the cell centre
                //// X-direction:
                //start.append(cc);
                //end.append(cc+nearGap*vector(1, 0, 0));
                //gapSize.append(nearGap);
                //
                //start2.append(cc);
                //end2.append(cc-nearGap*vector(1, 0, 0));
                //gapSize2.append(nearGap);
                //
                //// Y-direction:
                //start.append(cc);
                //end.append(cc+nearGap*vector(0, 1, 0));
                //gapSize.append(nearGap);
                //
                //start2.append(cc);
                //end2.append(cc-nearGap*vector(0, 1, 0));
                //gapSize2.append(nearGap);
                //
                //// Z-direction:
                //start.append(cc);
                //end.append(cc+nearGap*vector(0, 0, 1));
                //gapSize.append(nearGap);
                //
                //start2.append(cc);
                //end2.append(cc-nearGap*vector(0, 0, 1));
                //gapSize2.append(nearGap);


                // 3 axes aligned with normal

                // Use vector through cell centre
                vector n(v/(magV+ROOTVSMALL));

                // Get second vector. Make sure it is sufficiently perpendicular
                vector e2(1, 0, 0);
                scalar s = (e2 & n);
                if (mag(s) < 0.9)
                {
                    e2 -= s*n;
                }
                else
                {
                    e2 = vector(0, 1, 0);
                    e2 -= (e2 & n)*n;
                }
                e2 /= mag(e2);

                // Third vector
                vector e3 = n ^ e2;


                // Rays in first direction
1040
                start.append(cc);
1041
                end.append(cc+nearGap*n);
1042
1043
1044
                gapSize.append(nearGap);

                start2.append(cc);
1045
                end2.append(cc-nearGap*n);
1046
1047
                gapSize2.append(nearGap);

1048
                // Rays in second direction
1049
                start.append(cc);
1050
                end.append(cc+nearGap*e2);
1051
1052
1053
                gapSize.append(nearGap);

                start2.append(cc);
1054
                end2.append(cc-nearGap*e2);
1055
1056
                gapSize2.append(nearGap);

1057
                // Rays in third direction
1058
                start.append(cc);
1059
                end.append(cc+nearGap*e3);
1060
1061
1062
                gapSize.append(nearGap);

                start2.append(cc);
1063
                end2.append(cc-nearGap*e3);
1064
                gapSize2.append(nearGap);
1065
1066
1067
1068
            }
        }
    }

1069
    return start.size()-nOldRays;
1070
1071
1072
1073
1074
1075
1076
1077
1078
}


void Foam::meshRefinement::selectGapCandidates
(
    const labelList& refineCell,
    const label nRefine,

    labelList& cellMap,
1079
    labelList& gapShell,
1080
    List<FixedList<label, 3>>& shellGapInfo,
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    List<volumeType>& shellGapMode
) const
{
    const labelList& cellLevel = meshCutter_.cellLevel();
    const pointField& cellCentres = mesh_.cellCentres();

    // Collect cells to test
    cellMap.setSize(cellLevel.size()-nRefine);
    label compactI = 0;

    forAll(cellLevel, cellI)
    {
        if (refineCell[cellI] == -1)
        {
            cellMap[compactI++] = cellI;
        }
    }
    Info<< "Selected " << returnReduce(compactI, sumOp<label>())
        << " unmarked cells out of "
        << mesh_.globalData().nTotalCells() << endl;
    cellMap.setSize(compactI);

    // Do test to see whether cells are inside/outside shell with
    // applicable specification (minLevel <= celllevel < maxLevel)
    shells_.findHigherGapLevel
    (
        pointField(cellCentres, cellMap),
1108
        labelUIndList(cellLevel, cellMap)(),
1109
1110

        gapShell,
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        shellGapInfo,
        shellGapMode
    );

    // Compact out hits

    labelList map(shellGapInfo.size());
    compactI = 0;
    forAll(shellGapInfo, i)
    {
        if (shellGapInfo[i][2] > 0)
        {
            map[compactI++] = i;
        }
    }

    Info<< "Selected " << returnReduce(compactI, sumOp<label>())
        << " cells inside gap shells out of "
        << mesh_.globalData().nTotalCells() << endl;

    map.setSize(compactI);
1132
    cellMap = labelUIndList(cellMap, map)();
1133
    gapShell = labelUIndList(gapShell, map)();
1134
    shellGapInfo = UIndirectList<FixedList<label, 3>>(shellGapInfo, map)();
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    shellGapMode = UIndirectList<volumeType>(shellGapMode, map)();
}


void Foam::meshRefinement::mergeGapInfo
(
    const FixedList<label, 3>& shellGapInfo,
    const volumeType shellGapMode,
    const FixedList<label, 3>& surfGapInfo,
    const volumeType surfGapMode,
1145

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    FixedList<label, 3>& gapInfo,
    volumeType& gapMode
) const
{
    if (surfGapInfo[0] == 0)
    {
        gapInfo = shellGapInfo;
        gapMode = shellGapMode;
    }
    else if (shellGapInfo[0] == 0)
    {
        gapInfo = surfGapInfo;
        gapMode = surfGapMode;
    }
    else
    {
        // Both specify a level. Does surface level win? Or does information
        // need to be merged?

        //gapInfo[0] = max(surfGapInfo[0], shellGapInfo[0]);
        //gapInfo[1] = min(surfGapInfo[1], shellGapInfo[1]);
        //gapInfo[2] = max(surfGapInfo[2], shellGapInfo[2]);
        gapInfo = surfGapInfo;
        gapMode = surfGapMode;
    }
}


Foam::label Foam::meshRefinement::markInternalGapRefinement
(
    const scalar planarCos,
1177
    const bool spreadGapSize,
1178
1179
1180
    const label nAllowRefine,

    labelList& refineCell,
1181
1182
1183
    label& nRefine,
    labelList& numGapCells,
    scalarField& detectedGapSize
1184
1185
) const
{
1186
1187
1188
1189
1190
    detectedGapSize.setSize(mesh_.nCells());
    detectedGapSize = GREAT;
    numGapCells.setSize(mesh_.nCells());
    numGapCells = -1;

1191
1192
1193
1194
    const labelList& cellLevel = meshCutter_.cellLevel();
    const pointField& cellCentres = mesh_.cellCentres();
    const scalar edge0Len = meshCutter_.level0EdgeLength();

1195
    const List<FixedList<label, 3>>& extendedGapLevel =
1196
1197
        surfaces_.extendedGapLevel();
    const List<volumeType>& extendedGapMode = surfaces_.extendedGapMode();
1198
    const boolList& extendedGapSelf = surfaces_.gapSelf();
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

    // Get the gap level for the shells
    const labelList maxLevel(shells_.maxGapLevel());

    label oldNRefine = nRefine;

    if (max(maxLevel) > 0)
    {
        // Collect cells to test
        labelList cellMap;
1209
        labelList gapShell;
1210
        List<FixedList<label, 3>> shellGapInfo;
1211
1212
1213
1214
1215
1216
1217
        List<volumeType> shellGapMode;
        selectGapCandidates
        (
            refineCell,
            nRefine,

            cellMap,
1218
            gapShell,
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
            shellGapInfo,
            shellGapMode
        );

        // Find nearest point and normal on the surfaces
        List<pointIndexHit> nearInfo;
        vectorField nearNormal;
        labelList nearSurface;
        labelList nearRegion;
        {
            // Now we have both the cell-level and the gap size information. Use
            // this to calculate the gap size
            scalarField gapSize(cellMap.size());
            forAll(cellMap, i)
            {
                label cellI = cellMap[i];
1235
                scalar cellSize = edge0Len/pow(2.0, cellLevel[cellI]);
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
                gapSize[i] = shellGapInfo[i][0]*cellSize;
            }

            surfaces_.findNearestRegion
            (
                identity(surfaces_.surfaces().size()),
                pointField(cellCentres, cellMap),
                sqr(gapSize),
                nearSurface,
                nearInfo,
                nearRegion,
                nearNormal
            );
        }



1253
1254
1255
1256
1257
1258
1259
1260
        DynamicList<label> map(nearInfo.size());
        DynamicField<point> rayStart(nearInfo.size());
        DynamicField<point> rayEnd(nearInfo.size());
        DynamicField<scalar> gapSize(nearInfo.size());

        DynamicField<point> rayStart2(nearInfo.size());
        DynamicField<point> rayEnd2(nearInfo.size());
        DynamicField<scalar> gapSize2(nearInfo.size());
1261

1262
        label nTestCells = 0;
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

        forAll(nearInfo, i)
        {
            if (nearInfo[i].hit())
            {
                label globalRegionI = surfaces_.globalRegion
                (
                    nearSurface[i],
                    nearRegion[i]
                );

                // Combine info from shell and surface
                FixedList<label, 3> gapInfo;
                volumeType gapMode;
                mergeGapInfo
                (
                    shellGapInfo[i],
                    shellGapMode[i],
1281

1282
1283
                    extendedGapLevel[globalRegionI],
                    extendedGapMode[globalRegionI],
1284

1285
1286
1287
1288
                    gapInfo,
                    gapMode
                );

1289
1290
1291
1292
1293
1294
1295
                // Store wanted number of cells in gap
                label cellI = cellMap[i];
                label cLevel = cellLevel[cellI];
                if (cLevel >= gapInfo[1] && cLevel < gapInfo[2])
                {
                    numGapCells[cellI] = max(numGapCells[cellI], gapInfo[0]);
                }
1296

1297
1298
                // Construct one or more rays to test for oppositeness
                label nRays = generateRays
1299
1300
1301
1302
1303
1304
1305
                (
                    false,
                    nearInfo[i].hitPoint(),
                    nearNormal[i],
                    gapInfo,
                    gapMode,

1306
1307
                    cellCentres[cellI],
                    cLevel,
1308

1309
1310
1311
1312
1313
1314
1315
                    rayStart,
                    rayEnd,
                    gapSize,

                    rayStart2,
                    rayEnd2,
                    gapSize2
1316
                );
1317
                if (nRays > 0)
1318
                {
1319
1320
1321
1322
1323
                    nTestCells++;
                    for (label j = 0; j < nRays; j++)
                    {
                        map.append(i);
                    }
1324
1325
1326
1327
                }
            }
        }

1328
        Info<< "Selected " << returnReduce(nTestCells, sumOp<label>())
1329
1330
            << " cells for testing out of "
            << mesh_.globalData().nTotalCells() << endl;
1331
1332
1333
1334
1335
1336
1337
1338
        map.shrink();
        rayStart.shrink();
        rayEnd.shrink();
        gapSize.shrink();

        rayStart2.shrink();
        rayEnd2.shrink();
        gapSize2.shrink();
1339

1340
        cellMap = labelUIndList(cellMap, map)();
1341
1342
1343
1344
1345
1346
1347
1348
        nearNormal = UIndirectList<vector>(nearNormal, map)();
        shellGapInfo.clear();
        shellGapMode.clear();
        nearInfo.clear();
        nearSurface.clear();
        nearRegion.clear();


1349
1350
1351
1352
        // Do intersections in pairs
        labelList surf1;
        List<pointIndexHit> hit1;
        vectorField normal1;
1353
1354
        surfaces_.findNearestIntersection
        (
1355
1356
1357
1358
1359
            rayStart,
            rayEnd,
            surf1,
            hit1,
            normal1
1360
        );
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

        labelList surf2;
        List<pointIndexHit> hit2;
        vectorField normal2;
        surfaces_.findNearestIntersection
        (
            rayStart2,
            rayEnd2,
            surf2,
            hit2,
            normal2
        );

        // Extract cell based gap size
        forAll(surf1, i)
1376
        {
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
            // Combine selfProx of shell and surfaces. Ignore regions for
            // now
            const label shelli = gapShell[map[i]];

            bool selfProx = true;
            if (shelli != -1)
            {
                selfProx = shells_.gapSelf()[shelli][0];
            }
            if (surf1[i] != -1 && selfProx)
            {
                const label globalRegioni = surfaces_.globalRegion(surf1[i], 0);
                selfProx = extendedGapSelf[globalRegioni];
            }

            if
            (
                surf1[i] != -1
             && surf2[i] != -1
             && (surf2[i] != surf1[i] || selfProx)
            )
1398
            {
1399
1400
1401
1402
                // Found intersections with surface. Check for
                // - small gap
                // - coplanar normals

1403
                const label cellI = cellMap[i];
1404

1405
                const scalar d2 = magSqr(hit1[i].hitPoint()-hit2[i].hitPoint());
1406
1407
1408
1409
1410
1411
1412

                if
                (
                    cellI != -1
                 && (mag(normal1[i]&normal2[i]) > planarCos)
                 && (d2 < Foam::sqr(gapSize[i]))
                )
1413
                {
1414
1415
1416
1417
1418
                    detectedGapSize[cellI] = min
                    (
                        detectedGapSize[cellI],
                        Foam::sqrt(d2)
                    );
1419
1420
1421
1422
                }
            }
        }

1423
1424
        // Spread it
        if (spreadGapSize)
1425
        {
1426
1427
1428
1429
1430
1431
            // Field on cells and faces
            List<transportData> cellData(mesh_.nCells());
            List<transportData> faceData(mesh_.nFaces());

            // Start of walk
            const pointField& faceCentres = mesh_.faceCentres();
1432

1433
1434
1435
            DynamicList<label> frontFaces(mesh_.nFaces());
            DynamicList<transportData> frontData(mesh_.nFaces());
            for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
1436
            {
1437
1438
                label own = mesh_.faceOwner()[faceI];
                label nei = mesh_.faceNeighbour()[faceI];
1439

1440
1441
1442
1443
1444
                scalar minSize = min
                (
                    detectedGapSize[own],
                    detectedGapSize[nei]
                );
1445

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
                if (minSize < GREAT)
                {
                    frontFaces.append(faceI);
                    frontData.append
                    (
                        transportData
                        (
                            faceCentres[faceI],
                            minSize,
                            0.0
                        )
                    );
                }
            }
            for
            (
                label faceI = mesh_.nInternalFaces();
                faceI < mesh_.nFaces();
                faceI++
            )
            {
                label own = mesh_.faceOwner()[faceI];

                if (detectedGapSize[own] < GREAT)
                {
                    frontFaces.append(faceI);
                    frontData.append
                    (
                        transportData
                        (
                            faceCentres[faceI],
                            detectedGapSize[own],
                            0.0
                        )
                    );
                }
            }

            Info<< "Selected "
                << returnReduce(frontFaces.size(), sumOp<label>())
                << " faces for spreading gap size out of "
                << mesh_.globalData().nTotalFaces() << endl;


1490
            transportData::trackData td(surfaceIndex());
1491
1492

            FaceCellWave<transportData, transportData::trackData> deltaCalc
1493
1494
1495
1496
1497
1498
            (
                mesh_,
                frontFaces,
                frontData,
                faceData,
                cellData,
1499
1500
                mesh_.globalData().nTotalCells()+1,
                td
1501
1502
1503
1504
1505
1506
            );


            forAll(cellMap, i)
            {
                label cellI = cellMap[i];
1507
1508
                if
                (
1509
1510
1511
                    cellI != -1
                 && cellData[cellI].valid(deltaCalc.data())
                 && numGapCells[cellI] != -1
1512
1513
                )
                {
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
                    // Update transported gap size
                    detectedGapSize[cellI] = min
                    (
                        detectedGapSize[cellI],
                        cellData[cellI].data()
                    );
                }
            }
        }


        // Use it
        forAll(cellMap, i)
        {
            label cellI = cellMap[i];

            if (cellI != -1 && numGapCells[cellI] != -1)
            {
                // Needed gap size
                label cLevel = cellLevel[cellI];
1534
1535
                scalar cellSize =
                    meshCutter_.level0EdgeLength()/pow(2.0, cLevel);
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
                scalar neededGapSize = numGapCells[cellI]*cellSize;

                if (neededGapSize > detectedGapSize[cellI])
                {
                    if
                    (
                       !markForRefine
                        (
                            123,
                            nAllowRefine,
                            refineCell[cellI],
                            nRefine
                        )
                    )
                    {
                        break;
                    }
1553
1554
1555
1556
                }
            }
        }

1557

1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        if
        (
            returnReduce(nRefine, sumOp<label>())
          > returnReduce(nAllowRefine, sumOp<label>())
        )
        {
            Info<< "Reached refinement limit." << endl;
        }
    }

    return returnReduce(nRefine-oldNRefine, sumOp<label>());
}


Foam::label Foam::meshRefinement::markSmallFeatureRefinement
(
    const scalar planarCos,
    const label nAllowRefine,
    const labelList& neiLevel,
    const pointField& neiCc,

    labelList& refineCell,
    label& nRefine
) const
{
    const labelList& cellLevel = meshCutter_.cellLevel();
    const labelList& surfaceIndices = surfaces_.surfaces();
1585
    const List<FixedList<label, 3>>& extendedGapLevel =
1586
1587
        surfaces_.extendedGapLevel();
    const List<volumeType>& extendedGapMode = surfaces_.extendedGapMode();
1588
    const boolList& extendedGapSelf = surfaces_.gapSelf();
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

    label oldNRefine = nRefine;

    // Check that we're using any gap refinement
    labelList shellMaxLevel(shells_.maxGapLevel());

    if (max(shellMaxLevel) == 0)
    {
        return 0;
    }

    //- Force calculation of tetBasePt
    (void)mesh_.tetBasePtIs();
    (void)mesh_.cellTree();


    forAll(surfaceIndices, surfI)
    {
        label geomI = surfaceIndices[surfI];
        const searchableSurface& geom = surfaces_.geometry()[geomI];


        // Get the element index in a roundabout way. Problem is e.g.
        // distributed surface where local indices differ from global
        // ones (needed for getRegion call)

        pointField ctrs;
        labelList region;
        vectorField normal;
        {
            // Representative local coordinates and bounding sphere
            scalarField radiusSqr;
            geom.boundingSpheres(ctrs, radiusSqr);

            List<pointIndexHit> info;
            geom.findNearest(ctrs, radiusSqr, info);

            forAll(info, i)
            {
                if (!info[i].hit())
                {
1630
                    FatalErrorInFunction
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
                        << "fc:" << ctrs[i]
                        << " radius:" << radiusSqr[i]
                        << exit(FatalError);
                }
            }

            geom.getRegion(info, region);
            geom.getNormal(info, normal);
        }

        // Do test to see whether triangles are inside/outside shell with
        // applicable specification (minLevel <= celllevel < maxLevel)
1643
        List<FixedList<label, 3>> shellGapInfo;
1644
        List<volumeType> shellGapMode;
1645
        labelList gapShell;
1646
1647
1648
        shells_.findHigherGapLevel
        (
            ctrs,
1649
            labelList(ctrs.size(), Zero),
1650
1651

            gapShell,
1652
1653
1654
1655
1656
            shellGapInfo,
            shellGapMode
        );


1657
1658
        DynamicList<label> map(ctrs.size());
        DynamicList<label> cellMap(ctrs.size());
1659

1660
1661
1662
1663
1664
        DynamicField<point> rayStart(ctrs.size());
        DynamicField<point> rayEnd(ctrs.size());
        DynamicField<scalar> gapSize(ctrs.size());

        label nTestCells = 0;
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678

        forAll(ctrs, i)
        {
            if (shellGapInfo[i][2] > 0)
            {
                label globalRegionI = surfaces_.globalRegion(surfI, region[i]);

                // Combine info from shell and surface
                FixedList<label, 3> gapInfo;
                volumeType gapMode;
                mergeGapInfo
                (
                    shellGapInfo[i],
                    shellGapMode[i],
1679

1680
1681
                    extendedGapLevel[globalRegionI],
                    extendedGapMode[globalRegionI],
1682

1683
1684
1685
1686
1687
                    gapInfo,
                    gapMode
                );

                //- Option 1: use octree nearest searching inside polyMesh
1688
                //label cellI = mesh_.findCell(pt, polyMesh::CELL_TETS);
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

                //- Option 2: use octree 'inside' searching inside polyMesh. Is
                //            much faster.
                label cellI = -1;
                const indexedOctree<treeDataCell>& tree = mesh_.cellTree();
                if (tree.nodes().size() && tree.bb().contains(ctrs[i]))
                {
                    cellI = tree.findInside(ctrs[i]);
                }

                if (cellI != -1 && refineCell[cellI] == -1)
                {
                    // Construct one or two rays to test for oppositeness
                    // Note that we always want to use the surface normal
                    // and not the vector from cell centre to surface point

1705
                    label nRays = generateRays
1706
1707
1708
1709
1710
1711
1712
1713
                    (
                        ctrs[i],
                        normal[i],
                        gapInfo,
                        gapMode,

                        cellLevel[cellI],

1714
1715
                        rayStart,
                        rayEnd
1716
                    );
1717
1718

                    if (nRays > 0)
1719
                    {
1720
1721
1722
1723
1724
1725
                        nTestCells++;
                        for (label j = 0; j < nRays; j++)
                        {
                            cellMap.append(cellI);
                            map.append(i);
                        }
1726
1727
1728
1729
1730
                    }
                }
            }
        }

1731
        Info<< "Selected " << returnReduce(nTestCells, sumOp<label>())
1732
1733
            << " cells containing triangle centres out of "
            << mesh_.globalData().nTotalCells() << endl;
1734
1735
1736
1737
        map.shrink();
        cellMap.shrink();
        rayStart.shrink();
        rayEnd.shrink();
1738
1739
1740
1741
1742
1743
1744

        ctrs.clear();
        region.clear();
        shellGapInfo.clear();
        shellGapMode.clear();
        normal = UIndirectList<vector>(normal, map)();

mattijs's avatar