diff --git a/applications/test/tensor/Test-tensor.C b/applications/test/tensor/Test-tensor.C index 6da37d33fffad0bd9cbcb01a64bc64b1b384ec89..e406ab7f3bffe1b00b3b9e13014137e211934373 100644 --- a/applications/test/tensor/Test-tensor.C +++ b/applications/test/tensor/Test-tensor.C @@ -69,5 +69,121 @@ int main() Info<< (symm(t7) && t7) - (0.5*(t7 + t7.T()) && t7) << endl; Info<< (t7 && symm(t7)) - (t7 && 0.5*(t7 + t7.T())) << endl; + + /* + // Lots of awkward eigenvector tests ... + + tensor T_rand_real + ( + 0.9999996423721313, 0.3330855667591095, 0.6646450161933899, + 0.9745196104049683, 0.0369445420801640, 0.0846728682518005, + 0.6474838852882385, 0.1617118716239929, 0.2041363865137100 + ); + Debug(T_rand_real); + vector L_rand_real(eigenValues(T_rand_real)); + Debug(L_rand_real); + tensor U_rand_real(eigenVectors(T_rand_real)); + Debug(U_rand_real); + + Info << endl << endl; + + tensor T_rand_imag + ( + 0.8668024539947510, 0.1664607226848602, 0.8925783634185791, + 0.9126510620117188, 0.7408077120780945, 0.1499115079641342, + 0.0936608463525772, 0.7615650296211243, 0.8953040242195129 + ); + Debug(T_rand_imag); + vector L_rand_imag(eigenValues(T_rand_imag)); + Debug(L_rand_imag); + tensor U_rand_imag(eigenVectors(T_rand_imag)); + Debug(U_rand_imag); + + Info << endl << endl; + + tensor T_rand_symm + ( + 1.9999992847442627, 1.3076051771640778, 1.3121289014816284, + 1.3076051771640778, 0.0738890841603279, 0.2463847398757935, + 1.3121289014816284, 0.2463847398757935, 0.4082727730274200 + ); + Debug(T_rand_symm); + vector L_rand_symm(eigenValues(T_rand_symm)); + Debug(L_rand_symm); + tensor U_rand_symm(eigenVectors(T_rand_symm)); + Debug(U_rand_symm); + + Info << endl << endl; + + symmTensor T_rand_Symm + ( + 1.9999992847442627, 1.3076051771640778, 1.3121289014816284, + 0.0738890841603279, 0.2463847398757935, + 0.4082727730274200 + ); + Debug(T_rand_Symm); + vector L_rand_Symm(eigenValues(T_rand_Symm)); + Debug(L_rand_Symm); + tensor U_rand_Symm(eigenVectors(T_rand_Symm)); + Debug(U_rand_Symm); + + Info << endl << endl; + + tensor T_rand_diag + ( + 0.8668024539947510, 0, 0, + 0, 0.7408077120780945, 0, + 0, 0, 0.8953040242195129 + ); + Debug(T_rand_diag); + vector L_rand_diag(eigenValues(T_rand_diag)); + Debug(L_rand_diag); + tensor U_rand_diag(eigenVectors(T_rand_diag)); + Debug(U_rand_diag); + + Info << endl << endl; + + tensor T_repeated + ( + 0, 1, 1, + 1, 0, 1, + 1, 1, 0 + ); + Debug(T_repeated); + vector L_repeated(eigenValues(T_repeated)); + Debug(L_repeated); + tensor U_repeated(eigenVectors(T_repeated)); + Debug(U_repeated); + + Info << endl << endl; + + tensor T_repeated_zero + ( + 1, 1, 1, + 1, 1, 1, + 1, 1, 1 + ); + Debug(T_repeated_zero); + vector L_repeated_zero(eigenValues(T_repeated_zero)); + Debug(L_repeated_zero); + tensor U_repeated_zero(eigenVectors(T_repeated_zero)); + Debug(U_repeated_zero); + + Info << endl << endl; + + tensor T_triple + ( + 2, 0, 0, + 0, 2, 0, + 0, 0, 2 + ); + Debug(T_triple); + vector L_triple(eigenValues(T_triple)); + Debug(L_triple); + tensor U_triple(eigenVectors(T_triple)); + Debug(U_triple); + */ + + return 0; } diff --git a/src/OpenFOAM/primitives/Tensor/tensor/tensor.C b/src/OpenFOAM/primitives/Tensor/tensor/tensor.C index 7ec9702310a3ac0719ba486ea543f5a2d1680ce4..30f5ee246fb55666caeea2558fb30c7cfe3dbfbf 100644 --- a/src/OpenFOAM/primitives/Tensor/tensor/tensor.C +++ b/src/OpenFOAM/primitives/Tensor/tensor/tensor.C @@ -89,99 +89,80 @@ namespace Foam Foam::vector Foam::eigenValues(const tensor& t) { - scalar i = 0; - scalar ii = 0; - scalar iii = 0; + // The eigenvalues + scalar i, ii, iii; - if - ( - ( - mag(t.xy()) + mag(t.xz()) + mag(t.yx()) - + mag(t.yz()) + mag(t.zx()) + mag(t.zy()) - ) - < SMALL - ) + // Coefficients of the characteristic polynmial + // x^3 + a*x^2 + b*x + c = 0 + scalar a = + - t.xx() - t.yy() - t.zz(); + + scalar b = + t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz() + - t.xy()*t.yx() - t.yz()*t.zy() - t.zx()*t.xz(); + + scalar c = + - t.xx()*t.yy()*t.zz() + - t.xy()*t.yz()*t.zx() - t.xz()*t.zy()*t.yx() + + t.xx()*t.yz()*t.zy() + t.yy()*t.zx()*t.xz() + t.zz()*t.xy()*t.yx(); + + // Auxillary variables + scalar aBy3 = a/3; + + scalar P = (a*a - 3*b)/9; // == -p_wikipedia/3 + scalar PPP = P*P*P; + + scalar Q = (2*a*a*a - 9*a*b + 27*c)/54; // == q_wikipedia/2 + scalar QQ = Q*Q; + + // Three identical roots + if (mag(P) < SMALL && mag(Q) < SMALL) { - // diagonal matrix - i = t.xx(); - ii = t.yy(); - iii = t.zz(); + return vector(- aBy3, - aBy3, - aBy3); } - else + + // Two identical roots and one distinct root + else if (mag(PPP/QQ - 1) < SMALL) + { + scalar sqrtP = sqrt(P); + scalar signQ = sign(Q); + + i = ii = signQ*sqrtP - aBy3; + iii = - 2*signQ*sqrtP - aBy3; + } + + // Three distinct roots + else if (PPP > QQ) { - scalar a = -t.xx() - t.yy() - t.zz(); + scalar sqrtP = sqrt(P); + scalar value = cos(acos(Q/sqrt(PPP))/3); + scalar delta = sqrt(3 - 3*value*value); - scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz() - - t.xy()*t.yx() - t.xz()*t.zx() - t.yz()*t.zy(); + i = - 2*sqrtP*value - aBy3; + ii = sqrtP*(value + delta) - aBy3; + iii = sqrtP*(value - delta) - aBy3; + } - scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.zx() - - t.xz()*t.yx()*t.zy() + t.xz()*t.yy()*t.zx() - + t.xy()*t.yx()*t.zz() + t.xx()*t.yz()*t.zy(); + // One real root, two imaginary roots + // based on the above logic, PPP must be less than QQ + else + { + WarningIn("eigenValues(const tensor&)") + << "complex eigenvalues detected for tensor: " << t + << endl; - // If there is a zero root - if (mag(c) < 1e-100) + if (mag(P) < SMALL) { - scalar disc = sqr(a) - 4*b; - - if (disc >= -SMALL) - { - scalar q = -0.5*sqrt(max(0.0, disc)); - - i = 0; - ii = -0.5*a + q; - iii = -0.5*a - q; - } - else - { - FatalErrorIn("eigenValues(const tensor&)") - << "zero and complex eigenvalues in tensor: " << t - << abort(FatalError); - } + i = cbrt(QQ/2); } else { - scalar Q = (a*a - 3*b)/9; - scalar R = (2*a*a*a - 9*a*b + 27*c)/54; - - scalar R2 = sqr(R); - scalar Q3 = pow3(Q); - - // Three different real roots - if (R2 < Q3) - { - scalar sqrtQ = sqrt(Q); - scalar theta = acos(min(1.0, max(-1.0, R/(Q*sqrtQ)))); - - scalar m2SqrtQ = -2*sqrtQ; - scalar aBy3 = a/3; - - i = m2SqrtQ*cos(theta/3) - aBy3; - ii = m2SqrtQ*cos((theta + twoPi)/3) - aBy3; - iii = m2SqrtQ*cos((theta - twoPi)/3) - aBy3; - } - else - { - scalar A = cbrt(R + sqrt(R2 - Q3)); - - // Three equal real roots - if (A < SMALL) - { - scalar root = -a/3; - return vector(root, root, root); - } - else - { - // Complex roots - WarningIn("eigenValues(const tensor&)") - << "complex eigenvalues detected for tensor: " << t - << endl; - - return vector::zero; - } - } + scalar w = cbrt(- Q - sqrt(QQ - PPP)); + i = w + P/w - aBy3; } - } + return vector(-VGREAT, i, VGREAT); + } // Sort the eigenvalues into ascending order if (i > ii) @@ -203,24 +184,35 @@ Foam::vector Foam::eigenValues(const tensor& t) } -Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda) +Foam::vector Foam::eigenVector +( + const tensor& t, + const scalar lambda +) { - if (mag(lambda) < SMALL) - { - return vector::zero; - } - - // Construct the matrix for the eigenvector problem + // Constantly rotating direction ensures different eigenvectors are + // generated when called sequentially with a multiple eigenvalue + static vector direction(0,0,1); + vector oldDirection(direction); + scalar temp = direction[2]; + direction[2] = direction[1]; + direction[1] = direction[0]; + direction[0] = temp; + + // Construct the linear system for this eigenvalue tensor A(t - lambda*I); - // Calculate the sub-determinants of the 3 components - scalar sd0 = A.yy()*A.zz() - A.yz()*A.zy(); - scalar sd1 = A.xx()*A.zz() - A.xz()*A.zx(); - scalar sd2 = A.xx()*A.yy() - A.xy()*A.yx(); + // Determinants of the 2x2 sub-matrices used to find the eigenvectors + scalar sd0, sd1, sd2; + scalar magSd0, magSd1, magSd2; - scalar magSd0 = mag(sd0); - scalar magSd1 = mag(sd1); - scalar magSd2 = mag(sd2); + // Sub-determinants for a unique eivenvalue + sd0 = A.yy()*A.zz() - A.yz()*A.zy(); + sd1 = A.zz()*A.xx() - A.zx()*A.xz(); + sd2 = A.xx()*A.yy() - A.xy()*A.yx(); + magSd0 = mag(sd0); + magSd1 = mag(sd1); + magSd2 = mag(sd2); // Evaluate the eigenvector using the largest sub-determinant if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL) @@ -231,9 +223,8 @@ Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda) (A.yz()*A.zx() - A.zz()*A.yx())/sd0, (A.zy()*A.yx() - A.yy()*A.zx())/sd0 ); - ev /= mag(ev); - return ev; + return ev/mag(ev); } else if (magSd1 >= magSd2 && magSd1 > SMALL) { @@ -243,9 +234,8 @@ Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda) 1, (A.zx()*A.xy() - A.xx()*A.zy())/sd1 ); - ev /= mag(ev); - return ev; + return ev/mag(ev); } else if (magSd2 > SMALL) { @@ -255,167 +245,17 @@ Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda) (A.yx()*A.xz() - A.xx()*A.yz())/sd2, 1 ); - ev /= mag(ev); - - return ev; - } - else - { - return vector::zero; - } -} - -Foam::tensor Foam::eigenVectors(const tensor& t) -{ - vector evals(eigenValues(t)); - - tensor evs - ( - eigenVector(t, evals.x()), - eigenVector(t, evals.y()), - eigenVector(t, evals.z()) - ); - - return evs; -} - - -// Return eigenvalues in ascending order of absolute values -Foam::vector Foam::eigenValues(const symmTensor& t) -{ - scalar i = 0; - scalar ii = 0; - scalar iii = 0; - - if - ( - ( - mag(t.xy()) + mag(t.xz()) + mag(t.xy()) - + mag(t.yz()) + mag(t.xz()) + mag(t.yz()) - ) - < SMALL - ) - { - // diagonal matrix - i = t.xx(); - ii = t.yy(); - iii = t.zz(); + return ev/mag(ev); } - else - { - scalar a = -t.xx() - t.yy() - t.zz(); - - scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz() - - t.xy()*t.xy() - t.xz()*t.xz() - t.yz()*t.yz(); - scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.xz() - - t.xz()*t.xy()*t.yz() + t.xz()*t.yy()*t.xz() - + t.xy()*t.xy()*t.zz() + t.xx()*t.yz()*t.yz(); - - // If there is a zero root - if (mag(c) < 1e-100) - { - scalar disc = sqr(a) - 4*b; - - if (disc >= -SMALL) - { - scalar q = -0.5*sqrt(max(0.0, disc)); - - i = 0; - ii = -0.5*a + q; - iii = -0.5*a - q; - } - else - { - FatalErrorIn("eigenValues(const tensor&)") - << "zero and complex eigenvalues in tensor: " << t - << abort(FatalError); - } - } - else - { - scalar Q = (a*a - 3*b)/9; - scalar R = (2*a*a*a - 9*a*b + 27*c)/54; - - scalar R2 = sqr(R); - scalar Q3 = pow3(Q); - - // Three different real roots - if (R2 < Q3) - { - scalar sqrtQ = sqrt(Q); - scalar theta = acos(min(1.0, max(-1.0, R/(Q*sqrtQ)))); - - scalar m2SqrtQ = -2*sqrtQ; - scalar aBy3 = a/3; - - i = m2SqrtQ*cos(theta/3) - aBy3; - ii = m2SqrtQ*cos((theta + twoPi)/3) - aBy3; - iii = m2SqrtQ*cos((theta - twoPi)/3) - aBy3; - } - else - { - scalar A = cbrt(R + sqrt(R2 - Q3)); - - // Three equal real roots - if (A < SMALL) - { - scalar root = -a/3; - return vector(root, root, root); - } - else - { - // Complex roots - WarningIn("eigenValues(const symmTensor&)") - << "complex eigenvalues detected for symmTensor: " << t - << endl; - - return vector::zero; - } - } - } - } - - - // Sort the eigenvalues into ascending order - if (i > ii) - { - Swap(i, ii); - } - - if (ii > iii) - { - Swap(ii, iii); - } - - if (i > ii) - { - Swap(i, ii); - } - - return vector(i, ii, iii); -} - - -Foam::vector Foam::eigenVector(const symmTensor& t, const scalar lambda) -{ - if (mag(lambda) < SMALL) - { - return vector::zero; - } - - // Construct the matrix for the eigenvector problem - symmTensor A(t - lambda*I); - - // Calculate the sub-determinants of the 3 components - scalar sd0 = A.yy()*A.zz() - A.yz()*A.yz(); - scalar sd1 = A.xx()*A.zz() - A.xz()*A.xz(); - scalar sd2 = A.xx()*A.yy() - A.xy()*A.xy(); - - scalar magSd0 = mag(sd0); - scalar magSd1 = mag(sd1); - scalar magSd2 = mag(sd2); + // Sub-determinants for a repeated eigenvalue + sd0 = A.yy()*direction.z() - A.yz()*direction.y(); + sd1 = A.zz()*direction.x() - A.zx()*direction.z(); + sd2 = A.xx()*direction.y() - A.xy()*direction.x(); + magSd0 = mag(sd0); + magSd1 = mag(sd1); + magSd2 = mag(sd2); // Evaluate the eigenvector using the largest sub-determinant if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL) @@ -423,45 +263,41 @@ Foam::vector Foam::eigenVector(const symmTensor& t, const scalar lambda) vector ev ( 1, - (A.yz()*A.xz() - A.zz()*A.xy())/sd0, - (A.yz()*A.xy() - A.yy()*A.xz())/sd0 + (A.yz()*direction.x() - direction.z()*A.yx())/sd0, + (direction.y()*A.yx() - A.yy()*direction.x())/sd0 ); - ev /= mag(ev); - return ev; + return ev/mag(ev); } else if (magSd1 >= magSd2 && magSd1 > SMALL) { vector ev ( - (A.xz()*A.yz() - A.zz()*A.xy())/sd1, + (direction.z()*A.zy() - A.zz()*direction.y())/sd1, 1, - (A.xz()*A.xy() - A.xx()*A.yz())/sd1 + (A.zx()*direction.y() - direction.x()*A.zy())/sd1 ); - ev /= mag(ev); - return ev; + return ev/mag(ev); } else if (magSd2 > SMALL) { vector ev ( - (A.xy()*A.yz() - A.yy()*A.xz())/sd2, - (A.xy()*A.xz() - A.xx()*A.yz())/sd2, + (A.xy()*direction.z() - direction.y()*A.xz())/sd2, + (direction.x()*A.xz() - A.xx()*direction.z())/sd2, 1 ); - ev /= mag(ev); - return ev; - } - else - { - return vector::zero; + return ev/mag(ev); } + + // Triple eigenvalue + return oldDirection; } -Foam::tensor Foam::eigenVectors(const symmTensor& t) +Foam::tensor Foam::eigenVectors(const tensor& t) { vector evals(eigenValues(t)); @@ -476,4 +312,22 @@ Foam::tensor Foam::eigenVectors(const symmTensor& t) } +Foam::vector Foam::eigenValues(const symmTensor& t) +{ + return eigenValues(tensor(t)); +} + + +Foam::vector Foam::eigenVector(const symmTensor& t, const scalar lambda) +{ + return eigenVector(tensor(t), lambda); +} + + +Foam::tensor Foam::eigenVectors(const symmTensor& t) +{ + return eigenVectors(tensor(t)); +} + + // ************************************************************************* //