diff --git a/applications/test/TestTools/TestTools.H b/applications/test/TestTools/TestTools.H index 3fed3b7d5dfe40db2f912528de5a20d6ed8885fc..82dfe5e38b11e903675821854043468352700acf 100644 --- a/applications/test/TestTools/TestTools.H +++ b/applications/test/TestTools/TestTools.H @@ -5,7 +5,7 @@ \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- - Copyright (C) 2020-2021 OpenCFD Ltd. + Copyright (C) 2020-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -35,6 +35,7 @@ using namespace Foam; #include "complex.H" #include "Matrix.H" #include "Random.H" +#include <chrono> // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // @@ -46,6 +47,27 @@ unsigned nTest_ = 0; unsigned nFail_ = 0; +// Return the absolute tolerance value for bitwise comparisons of floatScalars +floatScalar getTol(floatScalar) +{ + return 1e-2; +} + + +// Return the absolute tolerance value for bitwise comparisons of doubleScalars +doubleScalar getTol(doubleScalar) +{ + return 1e-10; +} + + +// Return the absolute tolerance value for bitwise comparisons of doubleScalars +doubleScalar getTol(complex) +{ + return 1e-10; +} + + // Create a non-complex random Matrix. template<class MatrixType> typename std::enable_if @@ -174,10 +196,14 @@ typename std::enable_if const Type& x, const Type& y, const scalar absTol = 0, //<! useful for cmps near zero - const scalar relTol = 1e-8 //<! are values the same within 8 decimals + const scalar relTol = 1e-8, //<! are values the same within 8 decimals + const bool verbose = false ) { - Info<< msg << x << "?=" << y << endl; + if (verbose) + { + Info<< msg << x << "?=" << y << endl; + } unsigned nFail = 0; @@ -212,10 +238,14 @@ typename std::enable_if const Type& x, const Type& y, const scalar absTol = 0, - const scalar relTol = 1e-8 + const scalar relTol = 1e-8, + const bool verbose = false ) { - Info<< msg << x << "?=" << y << endl; + if (verbose) + { + Info<< msg << x << "?=" << y << endl; + } unsigned nFail = 0; @@ -253,10 +283,14 @@ typename std::enable_if const Type1& x, const Type2& y, const scalar absTol = 0, - const scalar relTol = 1e-8 + const scalar relTol = 1e-8, + const bool verbose = false ) { - Info<< msg << x << "?=" << y << endl; + if (verbose) + { + Info<< msg << x << "?=" << y << endl; + } unsigned nFail = 0; @@ -284,10 +318,14 @@ void cmp ( const word& msg, const bool x, - const bool y + const bool y, + const bool verbose = false ) { - Info<< msg << x << "?=" << y << endl; + if (verbose) + { + Info<< msg << x << "?=" << y << endl; + } unsigned nFail = 0; @@ -306,4 +344,39 @@ void cmp } +// Print OpenFOAM matrix in NumPy format +template<class MatrixType> +void InfoNumPyFormat +( + const MatrixType& mat, + const word objName +) +{ + Info<< objName << ": " << mat.m() << "x" << mat.n() << nl; + for (label m = 0; m < mat.m(); ++m) + { + Info<< "["; + for (label n = 0; n < mat.n(); ++n) + { + if (n == mat.n() - 1) + { + Info<< mat(m,n); + } + else + { + Info<< mat(m,n) << ","; + } + } + if (m == mat.m() - 1) + { + Info << "]" << nl; + } + else + { + Info << "]," << nl; + } + } +} + + // ************************************************************************* // diff --git a/applications/test/matrices/QRMatrix/Make/options b/applications/test/matrices/QRMatrix/Make/options index 4e772fdf9d7bc94221d127458f9d2ca32850fe69..b23590707c8d302fe75ce411d5bf921c029a7ff3 100644 --- a/applications/test/matrices/QRMatrix/Make/options +++ b/applications/test/matrices/QRMatrix/Make/options @@ -1,2 +1,2 @@ -/* EXE_INC = -I$(LIB_SRC)/finiteVolume/lnInclude */ +EXE_INC = -I../../TestTools /* EXE_LIBS = -lfiniteVolume */ diff --git a/applications/test/matrices/QRMatrix/Test-QRMatrix.C b/applications/test/matrices/QRMatrix/Test-QRMatrix.C index 679072715257733728458b9f2810891f0fa04053..9e51d67eb023484d000252082c79bade54d44cf1 100644 --- a/applications/test/matrices/QRMatrix/Test-QRMatrix.C +++ b/applications/test/matrices/QRMatrix/Test-QRMatrix.C @@ -5,7 +5,7 @@ \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- - Copyright (C) 2019-2020 OpenCFD Ltd. + Copyright (C) 2020-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -23,946 +23,338 @@ License You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. +Application + Test-QRMatrix + +Description + Tests for \c QRMatrix constructors, and member functions + using \c doubleScalar and \c complex base types. + \*---------------------------------------------------------------------------*/ #include "MatrixTools.H" #include "QRMatrix.H" -#include "Random.H" +#include "complex.H" #include "IOmanip.H" +#include "TestTools.H" -using namespace Foam; -using namespace Foam::MatrixTools; +#define PRINTALL false -#define equal MatrixTools::equal -#define RUNALL true -const bool verbose = true; +using namespace Foam; // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // -void horizontalLine() -{ - Info<< "+---------+---------+---------+---------+---------+" << nl; -} - - -// Create random scalar-type matrix -template<class MatrixType> -typename std::enable_if -< - !std::is_same<complex, typename MatrixType::cmptType>::value, - MatrixType ->::type makeRandomMatrix -( - const labelPair& dims, - Random& rndGen -) -{ - MatrixType mat(dims); - - std::generate - ( - mat.begin(), - mat.end(), - [&]{ return rndGen.GaussNormal<typename MatrixType::cmptType>(); } - ); - - return mat; -} - - -// Create random complex-type matrix -template<class MatrixType> -typename std::enable_if -< - std::is_same<complex, typename MatrixType::cmptType>::value, - MatrixType ->::type makeRandomMatrix -( - const labelPair& dims, - Random& rndGen -) -{ - MatrixType mat(dims); - - std::generate - ( - mat.begin(), - mat.end(), - [&] - { - return complex - ( - rndGen.GaussNormal<scalar>(), - rndGen.GaussNormal<scalar>() - ); - } - ); - - return mat; -} - - -// Print OpenFOAM matrix in NumPy format -template<class MatrixType> -void InfoNumPyFormat -( - const MatrixType& mat, - const word objName -) -{ - Info<< objName << ": " << mat.m() << "x" << mat.n() << nl; - for (label m = 0; m < mat.m(); ++m) - { - Info<< "["; - for (label n = 0; n < mat.n(); ++n) - { - if (n == mat.n() - 1) - { - Info<< mat(m,n); - } - else - { - Info<< mat(m,n) << ","; - } - } - if (m == mat.m() - 1) - { - Info << "]" << nl; - } - else - { - Info << "]," << nl; - } - } -} - - -// Returns true if two scalars are equal within a given tolerance, and v.v. -bool isEqual -( - const scalar a, - const scalar b, - const bool verbose = false, - const scalar relTol = 1e-5, - const scalar absTol = 1e-8 -) -{ - if ((absTol + relTol*mag(b)) < mag(a - b)) - { - if (verbose) - { - Info<< "Elements are not close in terms of tolerances:" - << nl << a << tab << b << nl; - } - return false; - } - - if (verbose) - { - Info<< "All elems are the same within the tolerances" << nl; - } - - return true; -} - - -// Prints true if a given matrix is empty, and v.v. -template<class MatrixType> -void isEmpty -( - const MatrixType& A, - const word objName -) +// Verify if Q is a unitary matrix for rectangular matrices +template<class Type> +void verify_Q(const RectangularMatrix<Type>& Q) { - Info<< "Empty " << objName << " = "; - if (A.empty()) - { - Info<< "true" << nl; - } - else - { - Info<< "false" << nl; - } + // non-square unitary matrices are not possible - do nothing } -// Checks if Q matrix is a unitary matrix -template<class MatrixType> -void cross_check_QRMatrix +// Verify if Q is a unitary matrix for square matrices +template<class Type> +void verify_Q ( - const MatrixType& Aorig, - const MatrixType& Q + const SquareMatrix<Type>& Q ) { - InfoNumPyFormat(Q, "Q"); - // mathworld.wolfram.com/UnitaryMatrix.html (Retrieved:18-06-19) - Info<< nl << "# Q.T()*Q = Q*Q.T() = I:" << nl; - const MatrixType QTQ(Q&Q); - const MatrixType QQT(Q^Q); - MatrixType IMatrix({Q.m(), Q.n()}, Zero); + const SquareMatrix<Type> QTQ(Q&Q); + const SquareMatrix<Type> QQT(Q^Q); + SquareMatrix<Type> IMatrix(Q.sizes(), Zero); for (label i = 0; i < IMatrix.n(); ++i) { - IMatrix(i,i) = pTraits<typename MatrixType::cmptType>::one; + IMatrix(i,i) = pTraits<Type>::one; } - equal(QTQ, IMatrix, verbose); - equal(QQT, IMatrix, verbose); - equal(QTQ, QQT, verbose); + cmp("# Q.T()*Q = I: ", flt(QTQ), flt(IMatrix), getTol(Type(0))); + cmp("# Q*Q.T() = I: ", flt(QQT), flt(IMatrix), getTol(Type(0))); + cmp("# QTQ = QQT: ", flt(QTQ), flt(QQT), getTol(Type(0))); } -// Checks if R matrix is an upper-triangular matrix +// Verify if R is an upper-triangular matrix template<class MatrixType> -void cross_check_QRMatrix +void verify_R ( const MatrixType& R ) { - InfoNumPyFormat(R, "R"); - + DynamicList<scalar> ltriR; + label k = 0; // mathworld.wolfram.com/UpperTriangularMatrix.html (Retrieved:18-06-19) - Info<< nl << "# R(i, j) = 0 for i > j:" << nl; for (label i = 0; i < R.m(); ++i) { for (label j = 0; j < R.n(); ++j) { if (j < i) { - isEqual(mag(R(i, j)), 0.0, verbose); + ltriR.append(mag(R(i, j))); + ++k; } } } + const List<scalar> ltri(k, Zero); + cmp("# R(i, j) = 0 for i > j: ", ltri, ltriR); } -// Checks if the given matrix can be reconstructed by Q and R matrices +// Verify if R is an upper-triangular matrix with diag elems non-increasing template<class MatrixType> -void cross_check_QRMatrix +void verify_R_pivoting ( - const MatrixType& Aorig, - const MatrixType& Q, const MatrixType& R ) { - InfoNumPyFormat(Aorig, "Aorig"); - - cross_check_QRMatrix(Aorig, Q); - - cross_check_QRMatrix(R); - - // mathworld.wolfram.com/QRDecomposition.html (Retrieved:18-06-19) - Info<< nl << "# Q*R = A:" << nl; - const MatrixType AReconstruct(Q*R); - equal(Aorig, AReconstruct, verbose); + // w.wiki/54m (Retrieved:20-06-19) + const List<scalar> diag0(mag(R.diag())); + List<scalar> diag1(diag0); + Foam::sort(diag1, std::greater<scalar>()); + cmp + ( + "# Diag elems of R non-increasing: |R11| >= |R22| >= ... >= |Rnn|: ", + diag0, + diag1 + ); } -// Checks if R matrix is an upper-triangular matrix, and obeys column pivoting +// Verify if the given matrix can be reconstructed by Q and R matrices template<class MatrixType> -void cross_check_QRMatrix +void verify_QR ( - const MatrixType& Aorig, - const labelList& orderP, - const SquareMatrix<typename MatrixType::cmptType>& P, + const MatrixType& A, + const MatrixType& Q, const MatrixType& R ) { - InfoNumPyFormat(Aorig, "Aorig"); - - InfoNumPyFormat(P, "P"); - - cross_check_QRMatrix(R); - - // w.wiki/54m (Retrieved:20-06-19) - Info<< nl << "# Diag elems of R non-increasing:" - << "|R11| >= |R22| >= ... >= |Rnn|:" << nl; - const List<scalar> diag0(mag(R.diag())); - List<scalar> diag1(diag0); - Foam::sort(diag1, std::greater<scalar>()); - forAll(diag0, i) - { - isEqual(diag0[i], diag1[i], verbose); - } + // mathworld.wolfram.com/QRDecomposition.html (Retrieved:18-06-19) + const MatrixType AReconstruct(Q*R); + cmp("# Q*R = A: ", flt(A), flt(AReconstruct)); } -// Checks if the given matrix can be reconstructed by column-pivoted Q and R +// Verify if the given matrix can be reconstructed by Q, R and P matrices template<class MatrixType> -void cross_check_QRMatrix +void verify_QR_pivoting ( - const MatrixType& Aorig, + const MatrixType& A, const MatrixType& Q, - const labelList& orderP, - const SquareMatrix<typename MatrixType::cmptType>& P, - const MatrixType& R + const MatrixType& R, + const SquareMatrix<typename MatrixType::cmptType>& P ) { - cross_check_QRMatrix(Aorig, orderP, P, R); - cross_check_QRMatrix(Aorig, Q); - // w.wiki/54m (Retrieved:20-06-19) - Info<< nl << "# Q*R = A*P:" << nl; const MatrixType AReconstruct(Q*R); - const MatrixType AP(Aorig*P); - equal(AP, AReconstruct, verbose); + const MatrixType AP(A*P); + cmp("# Q*R = A*P: ", flt(AReconstruct), flt(AP)); } -// Checks each constructor of QRMatrix type +// Verify the given QR decomposition template<class MatrixType> -void verification_QRMatrix +void verify ( - MatrixType& A + const QRMatrix<MatrixType>& QRM, + const MatrixType& A ) { - typedef SquareMatrix<typename MatrixType::cmptType> SMatrix; - - // Create working copies of matrix A - const MatrixType Aorig(A); - - // QRMatrix Constructors - #if (0 | RUNALL) - { - QRMatrix<MatrixType> QRNull; - } - #endif + const MatrixType& Q = QRM.Q(); + const MatrixType& R = QRM.R(); - #if (0 | RUNALL) - { - Info<< "# FULL_R | OUT_OF_PLACE" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE - ); - QRM.decompose(A); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(R); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_R | IN_PLACE" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE - ); - MatrixType A0(A); - QRM.decompose(A0); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(A0); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_QR | OUT_OF_PLACE" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE - ); - QRM.decompose(A); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - cross_check_QRMatrix(Aorig, Q, R); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_QR | IN_PLACE" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::IN_PLACE - ); - MatrixType A0(A); - QRM.decompose(A0); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, Q, A0); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_R | OUT_OF_PLACE | colPivot = on" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - QRM.decompose(A); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(Aorig, PList, P, R); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_R | IN_PLACE | colPivot = on" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - MatrixType A0(A); - QRM.decompose(A0); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, PList, P, A0); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_QR | OUT_OF_PLACE | colPivot = on" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - QRM.decompose(A); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - cross_check_QRMatrix(Aorig, Q, PList, P, R); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# FULL_QR | IN_PLACE | colPivot = on" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - MatrixType A0(A); - QRM.decompose(A0); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, Q, PList, P, A0); - } - #endif - - #if (0 | RUNALL) - { - Info<< "# A | FULL_R | OUT_OF_PLACE | colPivot = off" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(R); - } + #if PRINTALL + InfoNumPyFormat(A, "A"); + InfoNumPyFormat(Q, "Q"); + InfoNumPyFormat(R, "R"); #endif - #if (0 | RUNALL) - { - Info<< "# A | FULL_R | IN_PLACE | colPivot = off" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(A0); - } - #endif + verify_Q(Q); + verify_R(R); + verify_QR(A, Q, R); + Info<< endl; +} - #if (0 | RUNALL) - { - Info<< "# A | FULL_QR | OUT_OF_PLACE | colPivot = off" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - cross_check_QRMatrix(Aorig, Q, R); - } - #endif - #if (0 | RUNALL) - { - Info<< "# A | FULL_QR | IN_PLACE | colPivot = off" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, Q, A0); - } - #endif +// Verify the given QR decomposition with column pivoting +template<class MatrixType> +void verify_pivoting +( + const QRMatrix<MatrixType>& QRM, + const MatrixType& A +) +{ + const MatrixType& Q = QRM.Q(); + const MatrixType& R = QRM.R(); + const SquareMatrix<typename MatrixType::cmptType>& P = QRM.P(); - #if (0 | RUNALL) - { - Info<< "# A | FULL_R | OUT_OF_PLACE | colPivot = on" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(Aorig, PList, P, R); - } + #if PRINTALL + InfoNumPyFormat(A, "A"); + InfoNumPyFormat(Q, "Q"); + InfoNumPyFormat(R, "R"); + InfoNumPyFormat(P, "P"); #endif - #if (0 | RUNALL) - { - Info<< "# A | FULL_R | IN_PLACE | colPivot = on" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, PList, P, A0); - } - #endif + verify_Q(Q); + verify_R(R); + verify_R_pivoting(R); + verify_QR_pivoting(A, Q, R, P); + Info<< endl; +} - #if (0 | RUNALL) - { - Info<< "# A | FULL_QR | OUT_OF_PLACE | colPivot = on" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - cross_check_QRMatrix(Aorig, Q, PList, P, R); - } - #endif - #if (0 | RUNALL) +// Verify various QR decompositions +template<class MatrixType> +void verify_decomposition +( + const MatrixType& A +) +{ + Info<< "## Verify various QR decompositions" << nl << endl; { - Info<< "# A | FULL_QR | IN_PLACE | colPivot = on" << nl; - MatrixType A0(A); + Info<< "# modes::FULL" << nl; QRMatrix<MatrixType> QRM ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE + A, + QRMatrix<MatrixType>::modes::FULL ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, Q, PList, P, A0); + verify(QRM, A); } - #endif - - // constructors with the const type specifier - #if (0 | RUNALL) { - Info<< "# const A | FULL_R | colPivot = off" << nl; - const MatrixType A0(A); + Info<< "# modes::ECONOMY" << nl; QRMatrix<MatrixType> QRM ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::colPivoting::FALSE + A, + QRMatrix<MatrixType>::modes::ECONOMY ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(R); + verify(QRM, A); } - #endif - - #if (0 | RUNALL) { - Info<< "# const A | FULL_QR | colPivot = off" << nl; - const MatrixType A0(A); + Info<< "# modes::FULL, outputs::BOTH_QR, column-pivoting" << nl; QRMatrix<MatrixType> QRM ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::colPivoting::FALSE + A, + QRMatrix<MatrixType>::modes::FULL, + QRMatrix<MatrixType>::outputs::BOTH_QR, + QRMatrix<MatrixType>::pivoting::TRUE ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - cross_check_QRMatrix(Aorig, Q, R); + verify_pivoting(QRM, A); } - #endif - - #if (0 | RUNALL) { - Info<< "# const A | FULL_R | colPivot = on" << nl; - const MatrixType A0(A); + Info<< "# modes::ECONOMY, outputs::BOTH_QR, column-pivoting" << nl; QRMatrix<MatrixType> QRM ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_R, - QRMatrix<MatrixType>::colPivoting::TRUE + A, + QRMatrix<MatrixType>::modes::ECONOMY, + QRMatrix<MatrixType>::outputs::BOTH_QR, + QRMatrix<MatrixType>::pivoting::TRUE ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(Aorig, PList, P, R); + verify_pivoting(QRM, A); } - #endif +} - #if (0 | RUNALL) - { - Info<< "# const A | FULL_QR | colPivot = on" << nl; - const MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - cross_check_QRMatrix(Aorig, Q, PList, P, R); - } - #endif - // - #if (0 | RUNALL) - { - Info<< "# REDUCED_R | OUT_OF_PLACE" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE - ); - QRM.decompose(A); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(R); - - // check if full R and reduced R give the same answer - if (A.n() < A.m()) - { - QRMatrix<MatrixType> fullQRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE - ); - fullQRM.decompose(A); - const MatrixType& fullR(fullQRM.R()); - MatrixType fullR2(fullR.subMatrix(0,0,R.m())); - equal(fullR2, R, verbose); - } - } - #endif +// Verify the Moore-Penrose pseudo-inverse function +template<class MatrixType> +void verify_pinv +( + const MatrixType& A +) +{ + const scalar absTol = 1e-6; - #if (0 | RUNALL) - { - Info<< "# REDUCED_R | IN_PLACE" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE - ); - MatrixType A0(A); - QRM.decompose(A0); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(A0); - - // check if full R and reduced R give the same answer - if (A.n() < A.m()) - { - QRMatrix<MatrixType> fullQRM - ( - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::storeMethods::IN_PLACE - ); - MatrixType A1(A); - fullQRM.decompose(A1); - MatrixType fullR(A1.subMatrix(0,0,A0.m())); - equal(fullR, A0, verbose); - } - } - #endif + Info<< "## Verify Moore-Penrose pseudo-inverse: pinv()" << nl << endl; + const MatrixType APlus(MatrixTools::pinv(A)); - #if (0 | RUNALL) - { - Info<< "# REDUCED_R | OUT_OF_PLACE | colPivot = on" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - QRM.decompose(A); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(Aorig, PList, P, R); - } + #if PRINTALL + InfoNumPyFormat(A, "A"); + InfoNumPyFormat(APlus, "A^+"); #endif - #if (0 | RUNALL) { - Info<< "# REDUCED_R | IN_PLACE | colPivot = on" << nl; - QRMatrix<MatrixType> QRM - ( - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - MatrixType A0(A); - QRM.decompose(A0); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, PList, P, A0); + const MatrixType APlusPlus(MatrixTools::pinv(APlus)); + cmp("# (A^+)^+ = A: ", flt(APlusPlus), flt(A), absTol); } - #endif - #if (0 | RUNALL) + // The Moore-Penrose conditions + // w.wiki/5RL (Retrieved: 29-06-19) { - Info<< "# A | REDUCED_R | OUT_OF_PLACE | colPivot = off" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(R); + const MatrixType AAPlusA((A*APlus)*A); + cmp("# A*(A^+)*A = A: ", flt(AAPlusA), flt(A), absTol); } - #endif - #if (0 | RUNALL) { - Info<< "# A | REDUCED_R | IN_PLACE | colPivot = off" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(A0); + const MatrixType APlusAAPlus((APlus*A)*APlus); + cmp("# (A^+)*A*(A^+) = A: ", flt(APlusAAPlus), flt(APlus), absTol); } - #endif - #if (0 | RUNALL) { - Info<< "# A | REDUCED_R | OUT_OF_PLACE | colPivot = on" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::OUT_OF_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(Aorig, PList, P, R); + const MatrixType AAPlus(A*APlus); + const MatrixType AAPlusT(AAPlus.T()); + cmp("# (A*(A^+)).T() = A*(A^+): ", flt(AAPlusT), flt(AAPlus), absTol); } - #endif - #if (0 | RUNALL) { - Info<< "# A | REDUCED_R | IN_PLACE | colPivot = on" << nl; - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::storeMethods::IN_PLACE, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - isEmpty(R, "R"); - cross_check_QRMatrix(Aorig, PList, P, A0); + const MatrixType APlusA(APlus*A); + const MatrixType APlusAT(APlusA.T()); + cmp("# ((A^+)*A = ((A^+)*A).T(): ", flt(APlusA), flt(APlusAT), absTol); } - #endif +} - #if (0 | RUNALL) - { - Info<< "# const A | REDUCED_R | colPivot = off" << nl; - const MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::colPivoting::FALSE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(R); - } - #endif - #if (0 | RUNALL) - { - Info<< "# const A | REDUCED_R | colPivot = on" << nl; - const MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::REDUCED_R, - QRMatrix<MatrixType>::colPivoting::TRUE - ); - const MatrixType& Q(QRM.Q()); - const MatrixType& R(QRM.R()); - const labelList& PList(QRM.orderP()); - const SMatrix P(QRM.P()); - isEmpty(Q, "Q"); - cross_check_QRMatrix(Aorig, PList, P, R); - } - #endif +// Verify the direct solution of a linear system by QRMatrix +void verify_solve +( + const SquareMatrix<complex>& A +) +{ + // do nothing } -// Checks the direct solution of a linear system by QRMatrix -template<class MatrixType> -void verification_QRMatrixSolve +// Verify the direct solution of a linear system by QRMatrix +void verify_solve ( - MatrixType& A + const SquareMatrix<scalar>& A ) { - typedef SquareMatrix<typename MatrixType::cmptType> SMatrix; + Info<< "## Verify direct solution of A*x = b with A = Q*R:" << nl << endl; - // Create working copies of matrix A - const MatrixType Aorig(A); + typedef SquareMatrix<scalar> SMatrix; + const scalar absTol = 1e-6; // Direct solution of a linear system by QR decomposition - #if (0 | RUNALL) - { - MatrixType A0(A); - QRMatrix<MatrixType> QRM - ( - A0, - QRMatrix<MatrixType>::outputTypes::FULL_QR - ); + QRMatrix<SMatrix> QRM + ( + A, + QRMatrix<SMatrix>::modes::FULL, + QRMatrix<SMatrix>::outputs::BOTH_QR + ); - Info<< nl << "# Solution of A*x = b with A = Q*R:" << nl; - const scalarField residual(A0.m(), 0); - const scalarField source(A0.m(), 1); + const scalarField residual(A.m(), 0); + const scalarField source(A.m(), 1); - const scalarField x(QRM.solve(source)); - const scalarField A0xMinusSource(A0*x - source); - const scalarField xMinusQRinvSource(x - QRM.inv()*source); - const SMatrix QRinvA0(QRM.inv()*A0); - const SMatrix identity(A0.m(), I); + const scalarField x(QRM.solve(source)); + const scalarField AxMinusSource(A*x - source); + const scalarField xMinusQRinvSource(x - QRM.inv()*source); + const SMatrix QRinvA(QRM.inv()*A); + const SMatrix identity(A.m(), I); - forAll(residual, i) - { - isEqual(A0xMinusSource[i], residual[i], verbose); - isEqual(xMinusQRinvSource[i], residual[i], verbose); - } - equal(QRinvA0, identity, verbose); - } - #endif + cmp("# A*x - b = residual: ", AxMinusSource, residual, absTol); + cmp("# x - inv(QR)*b = residual: ", xMinusQRinvSource, residual, absTol); + cmp("# inv(QR)*A = I: ", flt(QRinvA), flt(identity), absTol); } -// Checks the parallel tall-skinny QR decomposition +// Verify the parallel tall-skinny QR decomposition template<class Type> -void verification_tsqr +void verify_tsqr ( Random& rndGen ) { + Info<< "## Verify parallel direct tall-skinny QR decomposition:" + << nl << endl; + typedef RectangularMatrix<Type> RMatrix; // Size of the full matrix and its partitions @@ -978,7 +370,7 @@ void verification_tsqr mRowsSum += mRows; } - # if 0 + #if PRINTALL Info<< "mRowsSum = " << mRowsSum << nl; Info<< "nColsSum = " << nColsSum << nl; Info<< "mRowsList = " << mRowsList << nl; @@ -999,8 +391,9 @@ void verification_tsqr QRMatrix<RMatrix> QRM ( A, - QRMatrix<RMatrix>::outputTypes::REDUCED_R, - QRMatrix<RMatrix>::colPivoting::FALSE + QRMatrix<RMatrix>::modes::ECONOMY, + QRMatrix<RMatrix>::outputs::ONLY_R, + QRMatrix<RMatrix>::pivoting::FALSE ); const RMatrix& R = QRM.R(); @@ -1023,8 +416,9 @@ void verification_tsqr QRMatrix<RMatrix> subQRM ( subA, - QRMatrix<RMatrix>::outputTypes::REDUCED_R, - QRMatrix<RMatrix>::colPivoting::FALSE + QRMatrix<RMatrix>::modes::ECONOMY, + QRMatrix<RMatrix>::outputs::ONLY_R, + QRMatrix<RMatrix>::pivoting::FALSE ); const RMatrix& subR = subQRM.R(); @@ -1036,8 +430,9 @@ void verification_tsqr QRMatrix<RMatrix> TSQR ( subRs, - QRMatrix<RMatrix>::outputTypes::REDUCED_R, - QRMatrix<RMatrix>::colPivoting::FALSE + QRMatrix<RMatrix>::modes::ECONOMY, + QRMatrix<RMatrix>::outputs::ONLY_R, + QRMatrix<RMatrix>::pivoting::FALSE ); const RMatrix& TSQRR = TSQR.R(); @@ -1048,433 +443,161 @@ void verification_tsqr } // Compare magnitude of R, since R is not unique up to the sign - equal(RMag, TSQRRMag, verbose); + cmp("# TSQR: ", flt(RMag), flt(TSQRRMag)); - #if 0 + #if PRINTALL InfoNumPyFormat(R, "R"); InfoNumPyFormat(TSQRR, "TSQRR"); #endif } -// Checks the back substitution function -template<class Type> -void verification_backSubstitution -( - const SquareMatrix<Type>& A, - const RectangularMatrix<Type>& b -) -{ - // Ax = b - typedef RectangularMatrix<Type> RMatrix; - - QRMatrix<RMatrix> QRNull; - const RMatrix X(QRNull.backSubstitution(A, b)); - - #if 1 - { - InfoNumPyFormat(A, "A"); - InfoNumPyFormat(b, "b"); - InfoNumPyFormat(X, "x"); - } - #endif - - #if (0 | RUNALL) - { - Info<< nl << "# A*X = b:" << nl; - const RMatrix AX(A*X); - equal(AX, b, verbose, 10, 1e-3, 1e-3); - } - #endif -} - +// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // -// Checks the Moore-Penrose pseudo-inverse function template<class MatrixType> -void verification_pinv -( - const MatrixType& A -) +void test_constructors(MatrixType) { - Info<< "### Moore-Penrose pseudo-inverse: pinv()" << nl << nl; - const MatrixType APlus(pinv(A)); - - #if 0 - InfoNumPyFormat(A, "A"); - InfoNumPyFormat(APlus, "A^+"); - #endif - - if (0 | RUNALL) - { - Info<< nl << "# (A^+)^+ = A:" << nl; - const MatrixType APlusPlus(pinv(APlus)); - equal(APlusPlus, A, verbose); - } - - // The four Moore-Penrose conditions - // w.wiki/5RL (Retrieved: 29-06-19) - if (0 | RUNALL) - { - Info<< nl << "# A*(A^+)*A = A:" << nl; - const MatrixType AAPlusA((A*APlus)*A); - equal(AAPlusA, A, verbose); - } - - if (0 | RUNALL) - { - Info<< nl << "# (A^+)*A*(A^+) = A:" << nl; - const MatrixType APlusAAPlus((APlus*A)*APlus); - equal(APlusAAPlus, APlus, verbose); - } - - if (0 | RUNALL) { - Info<< nl << "# (A*(A^+)).T() = A*(A^+):" << nl; - const MatrixType AAPlus(A*APlus); - const MatrixType AAPlusT(AAPlus.T()); - equal(AAPlusT, AAPlus, verbose); + Info<< "# Construct from a Matrix and modes" << nl; + MatrixType A({5,5}, Zero); + const QRMatrix<MatrixType> QRM + ( + A, + QRMatrix<MatrixType>::modes::FULL + ); } - - if (0 | RUNALL) { - Info<< nl << "# ((A^+)*A = ((A^+)*A).T():" << nl; - const MatrixType APlusA(APlus*A); - const MatrixType APlusAT(APlusA.T()); - equal(APlusA, APlusAT, verbose); + Info<< "# Construct from a const Matrix and modes" << nl; + const MatrixType A({5,5}, Zero); + const QRMatrix<MatrixType> QRM + ( + A, + QRMatrix<MatrixType>::modes::FULL + ); } } -// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * // - -int main(int argc, char *argv[]) +template<class MatrixType> +void test_decomposition(MatrixType) { - typedef SquareMatrix<scalar> SMatrix; - typedef RectangularMatrix<scalar> RMatrix; - typedef SquareMatrix<complex> SCMatrix; - typedef RectangularMatrix<complex> RCMatrix; + typedef typename MatrixType::cmptType cmptType; + typedef SquareMatrix<cmptType> SMatrix; + typedef RectangularMatrix<cmptType> RMatrix; - Info<< setprecision(15); Random rndGen(1234); - label numberOfTests = 10; + const label szTests = 20; + const label min = 10; + const label max = 50; - Info<< "### QR Decomposition:" << nl << nl; - - // SquareMatrix<scalar> - #if (0 | RUNALL) { - horizontalLine(); - - Info<< "## " << numberOfTests << " SquareMatrix<scalar> A:" << nl; - - for (label i = 0; i < numberOfTests; ++i) + for (label i = 0; i < szTests; ++i) { - const label mRows = rndGen.position<label>(1, 50); - Info<< nl << nl << "# Random A with random mRows = " << mRows << nl; + const label m = rndGen.position(min, max); + const label n = rndGen.position(min, max); - SMatrix A(makeRandomMatrix<SMatrix>({mRows, mRows}, rndGen)); - #if (0 | RUNALL) - { - const SMatrix B(A); - verification_pinv(B); - } - #endif - verification_QRMatrix(A); - verification_QRMatrixSolve(A); + const RMatrix A + ( + makeRandomMatrix<RMatrix>({m,n}, rndGen) + ); + verify_decomposition(A); + verify_pinv(A); } - - horizontalLine(); } - #endif - - // RectangularMatrix<scalar> - #if (0 | RUNALL) { - horizontalLine(); - - Info<< "## " << numberOfTests << " RectangularMatrix<scalar> A:" << nl; - - for (label i = 0; i < numberOfTests; ++i) + for (label i = 0; i < szTests; ++i) { - const label mRows = rndGen.position<label>(1, 50); - const label nCols = rndGen.position<label>(1, 50); - Info<< nl << nl << "# Random matrix A with" - << " random mRows = " << mRows - << " random nCols = " << nCols << nl; - - RMatrix A(makeRandomMatrix<RMatrix>({mRows, nCols}, rndGen)); + const label m = rndGen.position(min, max); - #if (0 | RUNALL) - { - const RMatrix B(A); - verification_pinv(B); - } - #endif + const SMatrix A + ( + makeRandomMatrix<SMatrix>({m,m}, rndGen) + ); - verification_QRMatrix(A); + verify_decomposition(A); + verify_pinv(A); + verify_solve(A); } - - horizontalLine(); } - #endif - - // SquareMatrix<complex(scalar, 0.0)> - #if (0 | RUNALL) + for (label i = 0; i < szTests; ++i) { - horizontalLine(); - - Info<< "## " << numberOfTests << " SquareMatrix<complex, 0> A:" << nl; - - for (label i = 0; i < numberOfTests; ++i) - { - const label mRows = rndGen.position<label>(1, 50); - Info<< nl << nl << "# Random A with random mRows = " << mRows << nl; - - SCMatrix A({mRows, mRows}, complex(0, 0)); - - for (auto& val : A) - { - val.Re() = rndGen.GaussNormal<scalar>(); - } - - verification_QRMatrix(A); - } - - horizontalLine(); + verify_tsqr<cmptType>(rndGen); } - #endif - - - // SquareMatrix<complex(scalar, scalar)> - #if (0 | RUNALL) - { - horizontalLine(); - - Info<< "## " << numberOfTests << " SquareMatrix<complex> A:" << nl; - - for (label i = 0; i < numberOfTests; ++i) - { - const label mRows = rndGen.position<label>(1, 50); - Info<< nl << nl << "# Random A with random mRows = " << mRows << nl; - - SCMatrix A(makeRandomMatrix<SCMatrix>({mRows, mRows}, rndGen)); - - #if (0 | RUNALL) - { - const SCMatrix B(A); - verification_pinv(B); - } - #endif +} - verification_QRMatrix(A); - } - horizontalLine(); - } - #endif +// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // +// Do compile-time recursion over the given types +template<std::size_t I = 0, typename... Tp> +inline typename std::enable_if<I == sizeof...(Tp), void>::type +run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){} - // RectangularMatrix<complex(scalar, scalar)> - #if (0 | RUNALL) - { - horizontalLine(); - Info<< "## " << numberOfTests << " RectangularMatrix<complex> A:" << nl; +template<std::size_t I = 0, typename... Tp> +inline typename std::enable_if<I < sizeof...(Tp), void>::type +run_tests(const std::tuple<Tp...>& types, const List<word>& typeID) +{ + Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl; + test_constructors(std::get<I>(types)); - for (label i = 0; i < numberOfTests; ++i) - { - const label mRows = rndGen.position<label>(1, 50); - const label nCols = rndGen.position<label>(1, 50); - Info<< nl << nl << "# Random matrix A with" - << " random mRows = " << mRows - << " random nCols = " << nCols << nl; + Info<< nl << " ## Test decomposition: "<< typeID[I] <<" ##" << nl; + test_decomposition(std::get<I>(types)); - RCMatrix A(makeRandomMatrix<RCMatrix>({mRows, nCols}, rndGen)); + run_tests<I + 1, Tp...>(types, typeID); +} - #if (0 | RUNALL) - { - const RCMatrix B(A); - verification_pinv(B); - } - #endif - verification_QRMatrix(A); - } +// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * // - horizontalLine(); - } - #endif +int main() +{ + Info<< setprecision(15); + const std::tuple + < + RectangularMatrix<doubleScalar>, + RectangularMatrix<complex>, + SquareMatrix<doubleScalar>, + SquareMatrix<complex> + > types + ( + std::make_tuple(Zero, Zero, Zero, Zero) + ); - #if (0 | RUNALL) - { - horizontalLine(); - - Info<< "### Parallel direct tall-skinny QR decomposition:" << nl; - /* - Parallel direct tall-skinny QR decomposition: - Benson, A. R., Gleich, D. F., & Demmel, J. (2013). - Direct QR factorizations for tall-and-skinny matrices in MapReduce - architectures. - 2013 IEEE International Conference on Big Data. - DOI:10.1109/bigdata.2013.6691583 - - Demmel, J., Grigori, L., Hoemmen, M., & Langou, J. (2012). - Communication-optimal parallel and sequential QR and LU - factorizations. - SIAM Journal on Scientific Computing, 34(1), A206-A239. - DOI:10.1137/080731992 - */ - // (Benson et al. 2013, Fig. 5) & (Demmel et al. 2012, Fig. 2) - - Info<< "## " << numberOfTests << " <scalar> tests:" << nl; - for (label i = 0; i < numberOfTests; ++i) - { - verification_tsqr<scalar>(rndGen); - } + const List<word> typeID + ({ + "RectangularMatrix<doubleScalar>", + "RectangularMatrix<complex>", + "SquareMatrix<doubleScalar>", + "SquareMatrix<complex>" + }); - Info<< nl << "## " << numberOfTests << " <complex> tests:" << nl; - for (label i = 0; i < numberOfTests; ++i) - { - verification_tsqr<complex>(rndGen); - } + std::chrono::steady_clock::time_point begin = + std::chrono::steady_clock::now(); - horizontalLine(); - } - #endif + run_tests(types, typeID); + std::chrono::steady_clock::time_point end = + std::chrono::steady_clock::now(); + Info<< "Time elapsed = " + << std::chrono::duration_cast<std::chrono::microseconds>(end - begin) + .count() + << "[µs]" << endl; - #if (0 | RUNALL) + if (nFail_) { - Info<< "### Back substitution:" << nl << nl; - - numberOfTests = 100; - - // <scalar> - #if (0 | RUNALL) - { - horizontalLine(); - - Info<< "## " << numberOfTests << " <scalar>:" << nl; - - for (label i = 0; i < numberOfTests; ++i) - { - const label mRows = rndGen.position<label>(20, 50); - const label pCols = rndGen.position<label>(20, 50); - Info<< nl << nl << "# Random square matrix A with" - << " random mRows = " << mRows - << " random nCols = " << mRows << nl; - - SMatrix A(makeRandomMatrix<SMatrix>({mRows, mRows}, rndGen)); - - // Zeroise the lower diagonal, - // so that A becomes an upper-triangular matrix - for (label i = 0; i < mRows; ++i) - { - for (label j = 0; j < i; ++j) - { - A(i, j) = 0.0; - } - } - - // det(triangularA) = prod(diag(triangularA)) - scalar det = 1; - const List<scalar> diag0(A.diag()); - for (const auto& val : diag0) - { - det *= val; - } - - if (1e-8 < det) - { - Info<< "# Random matrix b with" - << " random mRows = " << mRows - << " random nCols = " << pCols << nl; - - const RMatrix b - ( - makeRandomMatrix<RMatrix>({mRows, pCols}, rndGen) - ); - Info<< "det(A) = " << det << nl; - verification_backSubstitution(A, b); - } - else - { - Info<< "Random matrix A is a nearly-singular matrix." - << " Skipping back-substitution" << nl; - } - } - - horizontalLine(); - } - #endif - - // <complex> - #if (0 | RUNALL) - { - horizontalLine(); - - Info<< "## " << numberOfTests << " <complex>:" << nl; - - for (label i = 0; i < numberOfTests; ++i) - { - const label mRows = rndGen.position<label>(20, 50); - const label pCols = rndGen.position<label>(20, 50); - Info<< nl << nl << "# Random square matrix A with" - << " random mRows = " << mRows - << " random nCols = " << mRows << nl; - - SCMatrix A(makeRandomMatrix<SCMatrix>({mRows, mRows}, rndGen)); - - // Zeroise the lower diagonal, - // so that A becomes an upper-triangular matrix - for (label i = 0; i < mRows; ++i) - { - for (label j = 0; j < i; ++j) - { - A(i, j) = pTraits<complex>::zero; - } - } - - // det(triangularA) = prod(diag(triangularA)) - complex det = pTraits<complex>::one; - const List<complex> diag0(A.diag()); - for (const auto& val : diag0) - { - det *= val; - } - - if (1e-8 < mag(det)) - { - Info<< "# Random matrix b with" - << " random mRows = " << mRows - << " random nCols = " << pCols << nl; - - const RCMatrix b - ( - makeRandomMatrix<RCMatrix>({mRows, pCols}, rndGen) - ); - Info<< "det(A) = " << det << nl; - verification_backSubstitution(A, b); - } - else - { - Info<< "Random matrix A is a nearly-singular matrix." - << " Skipping back-substitution" << nl; - } - } - - horizontalLine(); - } - #endif + Info<< nl << " #### " + << "Failed in " << nFail_ << " tests " + << "out of total " << nTest_ << " tests " + << "####\n" << endl; + return 1; } - #endif - - Info<< nl << "End" << nl; + Info<< nl << " #### Passed all " << nTest_ <<" tests ####\n" << endl; return 0; } diff --git a/src/OpenFOAM/matrices/Matrix/Matrix.C b/src/OpenFOAM/matrices/Matrix/Matrix.C index d27013e8aeca8d6d7d9113112bfb00630a804fc0..0ba6168888428ee34a199c22e2374a50c2b8ebd2 100644 --- a/src/OpenFOAM/matrices/Matrix/Matrix.C +++ b/src/OpenFOAM/matrices/Matrix/Matrix.C @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2017 OpenFOAM Foundation - Copyright (C) 2019-2021 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -405,6 +405,23 @@ Form Foam::Matrix<Form, Type>::T() const } +template<class Form, class Type> +Form Foam::Matrix<Form, Type>::transpose() const +{ + Form At(labelPair{n(), m()}); + + for (label i = 0; i < m(); ++i) + { + for (label j = 0; j < n(); ++j) + { + At(j, i) = (*this)(i, j); + } + } + + return At; +} + + template<class Form, class Type> Foam::List<Type> Foam::Matrix<Form, Type>::diag() const { @@ -1003,9 +1020,9 @@ operator& Zero ); - for (label i = 0; i < AB.m(); ++i) + for (label k = 0; k < B.m(); ++k) { - for (label k = 0; k < B.m(); ++k) + for (label i = 0; i < AB.m(); ++i) { for (label j = 0; j < AB.n(); ++j) { @@ -1048,9 +1065,9 @@ operator^ for (label i = 0; i < AB.m(); ++i) { - for (label k = 0; k < BT.n(); ++k) + for (label j = 0; j < AB.n(); ++j) { - for (label j = 0; j < AB.n(); ++j) + for (label k = 0; k < BT.n(); ++k) { AB(i, j) += A(i, k)*Detail::conj(BT(j, k)); } diff --git a/src/OpenFOAM/matrices/Matrix/Matrix.H b/src/OpenFOAM/matrices/Matrix/Matrix.H index c11d7a27ec0f544a4abe26526f2ea608dab4f53c..eb34e064d31dd36cace4fd1fc451f6fa35407e24 100644 --- a/src/OpenFOAM/matrices/Matrix/Matrix.H +++ b/src/OpenFOAM/matrices/Matrix/Matrix.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation - Copyright (C) 2019-2021 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -372,9 +372,12 @@ public: // Operations - //- Return (conjugate) transpose of Matrix + //- Return conjugate transpose of Matrix Form T() const; + //- Return non-conjugate transpose of Matrix + Form transpose() const; + //- Right-multiply Matrix by a column vector (A * x) inline tmp<Field<Type>> Amul(const UList<Type>& x) const; diff --git a/src/OpenFOAM/matrices/QRMatrix/QRMatrix.C b/src/OpenFOAM/matrices/QRMatrix/QRMatrix.C index 0b63f2017b03ed289be06edb2e6a381fd93e664d..f7bf7db3ebfa98f9b7b7360af7375661aba7eeae 100644 --- a/src/OpenFOAM/matrices/QRMatrix/QRMatrix.C +++ b/src/OpenFOAM/matrices/QRMatrix/QRMatrix.C @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2016 OpenFOAM Foundation - Copyright (C) 2019-2021 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -31,96 +31,292 @@ License // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // template<class MatrixType> -void Foam::QRMatrix<MatrixType>::qr +Foam::label Foam::QRMatrix<MatrixType>::calcShapeFactor ( - MatrixType& A + const MatrixType& A +) const +{ + if (mode_ == modes::FULL) + { + return A.m(); + } + else if (mode_ == modes::ECONOMY) + { + return min(A.m(), A.n()); + } + + return 0; +} + + +template<class MatrixType> +void Foam::QRMatrix<MatrixType>::decompose +( + MatrixType& AT ) { - const label nIter = min(A.m() - 1, A.n()); + const label n = AT.m(); + const label m = AT.n(); + + List<cmptType> Rdiag(n, Zero); - // Loop through all subcolumns of which the diagonal elem is the first elem - for (label k = 0; k < nIter; ++k) + for (label k = 0; k < n; ++k) { - const RMatrix u(householderReflector(A.subColumn(k, k))); + // Compute 2-norm of k-th column without under/overflow + scalar nrm = 0; - applyHouseholder(A, u, k); - } + for (label i = k; i < m; ++i) + { + nrm = Foam::hypot(nrm, mag(AT(k,i))); + } - if (outputType_ == outputTypes::REDUCED_R) - { - A.resize(A.n(), A.n()); + // Avoid divide-by-zero. Use compare with == 0 not mag or VSMALL etc, + // otherwise wrong results (may need more investigation) + if (nrm != scalar(0)) + { + // Form k-th Householder vector + if (mag(AT(k,k)) < 0) + { + nrm *= -1; + } + + for (label i = k; i < m; ++i) + { + AT(k,i) /= nrm; + } + + AT(k,k) += scalar(1); + + // Apply transformation to remaining columns + for (label j = k + 1; j < n; ++j) + { + cmptType s(Zero); + + for (label i = k; i < m; ++i) + { + s += Detail::conj(AT(k,i))*AT(j,i); + } + + if (mag(AT(k,k)) > SMALL) + { + s /= -AT(k,k); + } + + for (label i = k; i < m; ++i) + { + AT(j,i) += s*AT(k,i); + } + } + } + + Rdiag[k] = -nrm; } + + calcQ(AT); + + calcR(AT, Rdiag); } template<class MatrixType> -void Foam::QRMatrix<MatrixType>::qrPivot +void Foam::QRMatrix<MatrixType>::decompose ( - MatrixType& A + MatrixType& AT, + const bool pivoting ) { - const label nCols = A.n(); - const label nIter = min(A.m() - 1, A.n()); + const label n = AT.m(); + const label m = AT.n(); + const label sz = min(m,n); // Initialise permutation vector, and column norm vector - P_ = identity(nCols); + p_ = identity(n); // Initialise vector norms of each column of A - List<scalar> colNorms(nCols); - for (label k = 0; k < nCols; ++k) + List<scalar> norms(n, Zero); + for (label k = 0; k < n; ++k) { - colNorms[k] = A.columnNorm(k, true); + for (label i = 0; i < m; ++i) + { + norms[k] += magSqr(AT(k, i)); + } } - // Loop through all subcolumns of which the diagonal elem is the first elem - for (label k = 0; k < nIter; ++k) - { - const labelRange colRange(k, nCols); - const SubList<scalar> subColNorms(colNorms, colRange); + List<cmptType> Rdiag(n, Zero); - // Column pivoting - const label maxColNormi = + for (label k = 0; k < sz; ++k) + { + const auto it = std::next(norms.cbegin(), k); + const label maxNormi = std::distance ( - subColNorms.cbegin(), - std::max_element(subColNorms.cbegin(), subColNorms.cend()) + it, + std::max_element(it, norms.cend()) ); - // Swap R_, P_ and colNorms_ according to pivot column if the current - // column is not the max norm column by avoiding any column swap where - // the leading elem is very small - if (maxColNormi != 0 && SMALL < mag(A(k, k + maxColNormi))) + // Swap A, P and norms according to pivot column if the current + // column is not the max norm column. Also avoid any column swaps + // where the leading element is very small + if (mag(AT(k + maxNormi,k)) > SMALL && maxNormi != 0) { - const RMatrix R1(A.subColumn(k)); - const RMatrix R2(A.subColumn(maxColNormi + k)); - A.subColumn(k) = R2; - A.subColumn(maxColNormi + k) = R1; + const RMatrix R1(AT.subRow(k)); + const RMatrix R2(AT.subRow(maxNormi + k)); + + AT.subRow(k) = R2; + AT.subRow(maxNormi + k) = R1; - Swap(P_[k], P_[maxColNormi + k]); - Swap(colNorms[k], colNorms[maxColNormi + k]); + Swap(p_[k], p_[maxNormi + k]); + Swap(norms[k], norms[maxNormi + k]); } { - const RMatrix u(householderReflector(A.subColumn(k, k))); + // Compute 2-norm of k-th column without under/overflow + scalar nrm = 0; - applyHouseholder(A, u, k); + for (label i = k; i < m; ++i) + { + nrm = Foam::hypot(nrm, mag(AT(k,i))); + } + + if (nrm != scalar(0)) + { + // Form k-th Householder vector + if (mag(AT(k,k)) < 0) + { + nrm *= -1; + } + + for (label i = k; i < m; ++i) + { + AT(k,i) /= nrm; + } + + AT(k,k) += scalar(1); + + // Apply transformation to remaining columns + for (label j = k + 1; j < n; ++j) + { + cmptType s(Zero); + + for (label i = k; i < m; ++i) + { + s += Detail::conj(AT(k,i))*AT(j,i); + } + + if (mag(AT(k,k)) > SMALL) + { + s /= -AT(k,k); + } + + for (label i = k; i < m; ++i) + { + AT(j,i) += s*AT(k,i); + } + } + } + + Rdiag[k] = -nrm; } // Update norms - if (k < nIter - 1) + if (k < sz - 1) { label q = k + 1; - for (const auto& val : RMatrix(A.subRow(k, q))) + for (const auto& val : RMatrix(AT.subColumn(k, q))) { - colNorms[q] -= magSqr(val); + norms[q] -= magSqr(val); ++q; } } } - if (outputType_ == outputTypes::REDUCED_R) + calcQ(AT); + + calcR(AT, Rdiag); +} + + +template<class MatrixType> +void Foam::QRMatrix<MatrixType>::calcQ +( + const MatrixType& AT +) +{ + if (output_ == outputs::ONLY_R) { - A.resize(A.n(), A.n()); + return; + } + + const label n = AT.m(); + const label m = AT.n(); + + Q_.resize(m, sz_); + + MatrixType QT(Q_.transpose()); + + for (label k = sz_ - 1; k >= 0; --k) + { + for (label i = 0; i < m; ++i) + { + QT(k,i) = Zero; + } + + QT(k,k) = scalar(1); + + for (label j = k; j < sz_; ++j) + { + if (n > k && mag(AT(k,k)) > SMALL) + { + cmptType s(Zero); + + for (label i = k; i < m; ++i) + { + s += AT(k,i)*QT(j,i); + } + + s /= -AT(k,k); + + for (label i = k; i < m; ++i) + { + QT(j,i) += s*Detail::conj(AT(k,i)); + } + } + } + } + + Q_ = QT.T(); +} + + +template<class MatrixType> +void Foam::QRMatrix<MatrixType>::calcR +( + const MatrixType& AT, + const List<cmptType>& diag +) +{ + if (output_ == outputs::ONLY_Q) + { + return; + } + + const label n = AT.m(); + + R_.resize(sz_, n); + + for (label i = 0; i < sz_; ++i) + { + for (label j = 0; j < n; ++j) + { + if (i < j) + { + R_(i,j) = AT(j,i); + } + else if (i == j) + { + R_(i,j) = diag[i]; + } + } } } @@ -182,49 +378,36 @@ void Foam::QRMatrix<MatrixType>::solveImpl // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // -template<class MatrixType> -Foam::QRMatrix<MatrixType>::QRMatrix() -: - outputType_(), - storeMethod_(), - colPivot_() -{} - - template<class MatrixType> Foam::QRMatrix<MatrixType>::QRMatrix ( - const outputTypes outputType, - const storeMethods storeMethod, - const colPivoting colPivot + const modes mode, + const outputs output, + const bool pivoting, + MatrixType& A ) : - outputType_(outputType), - storeMethod_(storeMethod), - colPivot_(colPivot), + mode_(mode), + output_(output), + sz_(calcShapeFactor(A)), Q_(), R_(), - P_() -{} + p_() +{ + // Non-conjugate transpose of input matrix + MatrixType AT(A.transpose()); + A.clear(); + if (pivoting) + { + decompose(AT, pivoting); + } + else + { + decompose(AT); + } -template<class MatrixType> -Foam::QRMatrix<MatrixType>::QRMatrix -( - MatrixType& A, - const outputTypes outputType, - const storeMethods storeMethod, - const colPivoting colPivot -) -: - outputType_(outputType), - storeMethod_(storeMethod), - colPivot_(colPivot), - Q_(), - R_(), - P_() -{ - decompose(A); + AT.clear(); } @@ -232,126 +415,34 @@ template<class MatrixType> Foam::QRMatrix<MatrixType>::QRMatrix ( const MatrixType& A, - const outputTypes outputType, - const colPivoting colPivot + const modes mode, + const outputs output, + const bool pivoting ) : - outputType_(outputType), - storeMethod_(storeMethods::OUT_OF_PLACE), - colPivot_(colPivot), + mode_(mode), + output_(output), + sz_(calcShapeFactor(A)), Q_(), R_(), - P_() + p_() { - decompose(A); -} - + MatrixType AT(A.transpose()); -// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * // - -template<class MatrixType> -void Foam::QRMatrix<MatrixType>::decompose -( - MatrixType& A -) -{ - // Check whether settings and input are consistent for reduced QRMatrix - if (A.m() <= A.n() && outputType_ == outputTypes::REDUCED_R) + if (pivoting) { - outputType_ = outputTypes::FULL_R; - - #if FULLDEBUG - WarningInFunction - << "Reduced QR decomposition is by definition limited to matrices" - << " wherein rows > columns, thus computing FULL decomposition." - << nl; - #endif + decompose(AT, pivoting); } - - // Allocate resources for Q_, if need be - if (outputType_ == outputTypes::FULL_QR) + else { - Q_ = MatrixType({A.m(), A.m()}, I); + decompose(AT); } - // Allocate resources for R_ and execute decomposition - switch (storeMethod_) - { - case storeMethods::IN_PLACE: - { - if (colPivot_) - { - qrPivot(A); - } - else - { - qr(A); - } - break; - } - - case storeMethods::OUT_OF_PLACE: - { - R_ = A; - - if (colPivot_) - { - qrPivot(R_); - } - else - { - qr(R_); - } - break; - } - } + AT.clear(); } -template<class MatrixType> -void Foam::QRMatrix<MatrixType>::decompose -( - const MatrixType& A -) -{ - if (storeMethod_ == storeMethods::IN_PLACE) - { - WarningInFunction - << "const type qualifier invalidates storeMethods::IN_PLACE." << nl; - } - - // Check whether settings and input are consistent for reduced QRMatrix - if (A.m() <= A.n() && outputType_ == outputTypes::REDUCED_R) - { - outputType_ = outputTypes::FULL_R; - - #if FULLDEBUG - WarningInFunction - << "Reduced QR decomposition is by definition limited to matrices" - << " wherein rows > columns, thus computing FULL decomposition." - << nl; - #endif - } - - // Allocate resources for Q_, if need be - if (outputType_ == outputTypes::FULL_QR) - { - Q_ = MatrixType({A.m(), A.m()}, I); - } - - // Allocate resources for R_ and execute decomposition - R_ = A; - - if (colPivot_) - { - qrPivot(R_); - } - else - { - qr(R_); - } -} - +// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * // template<class MatrixType> void Foam::QRMatrix<MatrixType>::solve @@ -407,39 +498,15 @@ Foam::QRMatrix<MatrixType>::solve } -template<class MatrixType> -typename Foam::QRMatrix<MatrixType>::SMatrix -Foam::QRMatrix<MatrixType>::inv() const -{ - const label m = Q_.m(); - - Field<cmptType> x(m); - SMatrix inv(m); - - for (label i = 0; i < m; ++i) - { - for (label j = 0; j < m; ++j) - { - x[j] = Q_(i, j); - } - solvex(x); - inv.subColumn(i) = x; - } - - return inv; -} - - template<class MatrixType> Foam::RectangularMatrix<typename MatrixType::cmptType> -Foam::QRMatrix<MatrixType>::backSubstitution +Foam::QRMatrix<MatrixType>::solve ( - const SMatrix& A, const RMatrix& rhs ) { - const label mRows = A.m(); - const label nCols = A.n(); + const label mRows = R_.m(); + const label nCols = R_.n(); const label pCols = rhs.n(); #ifdef FULLDEBUG @@ -453,19 +520,20 @@ Foam::QRMatrix<MatrixType>::backSubstitution << abort(FatalError); } - const List<cmptType> diag(A.diag()); + const List<cmptType> diag(R_.diag()); for (const auto& val : diag) { if (mag(val) < SMALL) { WarningInFunction - << "SMALL-valued diagonal elem in back-substitution." << nl; + << "SMALL-valued diagonal elem in back-substitution." + << endl; } } } #endif - RMatrix X({nCols, pCols}, Zero); + RMatrix b({nCols, pCols}, Zero); for (label i = 0; i < pCols; ++i) { @@ -475,27 +543,49 @@ Foam::QRMatrix<MatrixType>::backSubstitution for (label k = j + 1; k < mRows; ++k) { - alpha -= X(k, i)*A(j, k); + alpha -= b(k, i)*R_(j, k); } - X(j, i) = alpha/A(j, j); + b(j, i) = alpha/R_(j, j); + } + } + + return b; +} + + +template<class MatrixType> +typename Foam::QRMatrix<MatrixType>::SMatrix +Foam::QRMatrix<MatrixType>::inv() const +{ + const label m = Q_.m(); + + Field<cmptType> x(m); + SMatrix inv(m); + + for (label i = 0; i < m; ++i) + { + for (label j = 0; j < m; ++j) + { + x[j] = Q_(i, j); } + solvex(x); + inv.subColumn(i) = x; } - return X; + return inv; } // * * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * // template<class MatrixType> -MatrixType Foam::pinv +MatrixType Foam::MatrixTools::pinv ( const MatrixType& A, - const scalar tolerance + scalar tol ) { - scalar tol = tolerance; typedef typename MatrixType::cmptType cmptType; if (A.empty()) @@ -518,15 +608,16 @@ MatrixType Foam::pinv QRMatrix<MatrixType> QRM ( A, - QRMatrix<MatrixType>::outputTypes::FULL_QR, - QRMatrix<MatrixType>::colPivoting::TRUE + QRMatrix<MatrixType>::modes::FULL, + QRMatrix<MatrixType>::outputs::BOTH_QR, + QRMatrix<MatrixType>::pivoting::TRUE ); - const MatrixType& R(QRM.R()); - const MatrixType& Q(QRM.Q()); + const MatrixType& R = QRM.R(); + const MatrixType& Q = QRM.Q(); // R1 (KP:p. 648) // Find the first diagonal element index with (almost) zero value in R - label firstZeroElemi = 0; + label elemi = 0; label i = 0; while (i < 2) { @@ -534,14 +625,14 @@ MatrixType Foam::pinv auto lessThan = [=](const cmptType& x) { return tol > mag(x); }; - firstZeroElemi = + elemi = std::distance ( diag.cbegin(), std::find_if(diag.cbegin(), diag.cend(), lessThan) ); - if (firstZeroElemi == 0) + if (elemi == 0) { if (i == 0) { @@ -572,7 +663,7 @@ MatrixType Foam::pinv // Exclude the first (almost) zero diagonal row and the rows below // since R diagonal is already descending due to the QR column pivoting - const RectangularMatrix<cmptType> R1(R.subMatrix(0, 0, firstZeroElemi)); + const RectangularMatrix<cmptType> R1(R.subMatrix(0, 0, elemi)); // R2 (KP:p. 648) if (R1.n() < R1.m()) @@ -582,15 +673,15 @@ MatrixType Foam::pinv QRMatrix<SquareMatrix<cmptType>> QRSolve ( C, - QRMatrix<SquareMatrix<cmptType>>::outputTypes::FULL_QR + QRMatrix<SquareMatrix<cmptType>>::modes::FULL, + QRMatrix<SquareMatrix<cmptType>>::outputs::BOTH_QR ); RectangularMatrix<cmptType> R2 ( - QRSolve.backSubstitution + QRSolve.solve ( - QRSolve.R(), - QRSolve.Q() & (R1.T()) + QRSolve.Q() & R1.T() ) ); @@ -606,14 +697,14 @@ MatrixType Foam::pinv QRMatrix<SquareMatrix<cmptType>> QRSolve ( C, - QRMatrix<SquareMatrix<cmptType>>::outputTypes::FULL_QR + QRMatrix<SquareMatrix<cmptType>>::modes::FULL, + QRMatrix<SquareMatrix<cmptType>>::outputs::BOTH_QR ); RectangularMatrix<cmptType> R2 ( - QRSolve.backSubstitution + QRSolve.solve ( - QRSolve.R(), QRSolve.Q() & R1 ) ); diff --git a/src/OpenFOAM/matrices/QRMatrix/QRMatrix.H b/src/OpenFOAM/matrices/QRMatrix/QRMatrix.H index ee9bd62edf2ae4328c618aeb6083543a52050fde..dcb32cc6db14207853b1559c6c0bbca26b4ed71c 100644 --- a/src/OpenFOAM/matrices/QRMatrix/QRMatrix.H +++ b/src/OpenFOAM/matrices/QRMatrix/QRMatrix.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2016 OpenFOAM Foundation - Copyright (C) 2019-2021 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -28,29 +28,36 @@ Class Foam::QRMatrix Description - QRMatrix (i.e. QR decomposition, QR factorisation or orthogonal-triangular - decomposition) decomposes a scalar/complex matrix \c A into the following - matrix product: + \c QRMatrix computes QR decomposition of a given + scalar/complex matrix \c A into the following: \verbatim - A = Q*R, + A = Q R \endverbatim - where - \c Q is a unitary similarity matrix, - \c R is an upper triangular matrix. + or in case of QR decomposition with column pivoting: - Reference: \verbatim - QR decomposition: - mathworld.wolfram.com/QRDecomposition.html (Retrieved:17-06-19) - w.wiki/52X (Retrieved: 17-06-19) + A P = Q R + \endverbatim - QR decomposition with Householder reflector (tag:M): - Monahan, J. F. (2011). - Numerical methods of statistics. - Cambridge: Cambridge University Press. - DOI:10.1017/CBO9780511977176 + where + \vartable + Q | Unitary/orthogonal matrix + R | Upper triangular matrix + P | Permutation matrix + \endvartable + + References: + \verbatim + TNT implementation: + Pozo, R. (1997). + Template Numerical Toolkit for linear algebra: + High performance programming with C++ + and the Standard Template Library. + The International Journal of Supercomputer Applications + and High Performance Computing, 11(3), 251-263. + DOI:10.1177/109434209701100307 QR decomposition with column pivoting (tag:QSB): Quintana-OrtÃ, G., Sun, X., & Bischof, C. H. (1998). @@ -75,54 +82,47 @@ Description A new method for computing Moore–Penrose inverse matrices. Journal of Computational and applied Mathematics, 228(1), 412-417. DOI:10.1016/j.cam.2008.10.008 - - Operands of QR decomposition: - mathworld.wolfram.com/UnitaryMatrix.html (Retrieved:13-06-19) - mathworld.wolfram.com/UpperTriangularMatrix.html (Retrieved:16-06-19) - mathworld.wolfram.com/PermutationMatrix.html (Retrieved:20-06-19) - - Back substitution: - mathworld.wolfram.com/GaussianElimination.html (Retrieved:15-06-19) \endverbatim Usage - Input types: - - \c A can be a \c SquareMatrix<Type> or \c RectangularMatrix<Type> - Output types: - - \c Q is always of the type of the matrix \c A - - \c R is always of the type of the matrix \c A - - Options for the output forms of \c QRMatrix (for an (m-by-n) input matrix - \c A with k = min(m, n)): - - outputTypes::FULL_R: computes only \c R (m-by-n) - - outputTypes::FULL_QR: computes both \c R and \c Q (m-by-m) - - outputTypes::REDUCED_R: computes only reduced \c R (k-by-n) - - Options where to store \c R: - - storeMethods::IN_PLACE: replaces input matrix content with \c R - - storeMethods::OUT_OF_PLACE: creates new object of \c R - - Options for the computation of column pivoting: - - colPivoting::FALSE: switches off column pivoting - - colPivoting::TRUE: switches on column pivoting - - Direct solution of linear systems A x = b is possible by solve() alongside - the following limitations: - - \c A = a scalar square matrix - - output type = outputTypes::FULL_QR - - store method = storeMethods::IN_PLACE + \heading Input: + \vartable + A | RectangularMatrix<Type> or SquareMatrix<Type> + \endvartable + + \heading Options for the decomposition mode: + \vartable + modes::FULL | compute full-size decomposition + modes::ECONOMY | compute economy-size decomposition + \endvartable + + \heading Options for the output types: + \vartable + outputs::ONLY\_Q | compute only Q + outputs::ONLY\_R | compute only R + outputs::BOTH\_QR | compute both Q and R + \endvartable + + \heading Options for the column pivoting: + \vartable + pivoting::FALSE | switch off column pivoting + pivoting::TRUE | switch on column pivoting + \endvartable + + \heading Output: + \vartable + Q | m-by-m (FULL) or m-by-k (ECONOMY) with k = min(m,n) + R | m-by-n (FULL) or k-by-n (ECONOMY) with k = min(m,n) + p | n-element label list + P | n-by-n permutation matrix + \endvartable Notes - - QR decomposition is not unique if \c R is not positive diagonal \c R. - - The option combination: - - outputTypes::REDUCED_R - - storeMethods::IN_PLACE - will not modify the rows of input matrix \c A after its nth row. - - Both FULL_R and REDUCED_R QR decompositions execute the same number of - operations. Yet REDUCED_R QR decomposition returns only the first n rows - of \c R if m > n for an input m-by-n matrix \c A. - - For m <= n, FULL_R and REDUCED_R will produce the same matrices. + - \c QRMatrix involves modified implementations of the public-domain + library \c TNT, which is available at https://math.nist.gov/tnt/index.html. + - \c Q and \c R are always of the same type of the matrix \c A. + - \c Type can be \c scalar or \c complex. See also Test-QRMatrix.C @@ -133,12 +133,11 @@ SourceFiles \*---------------------------------------------------------------------------*/ -#ifndef QRMatrix_H -#define QRMatrix_H +#ifndef Foam_QRMatrix_H +#define Foam_QRMatrix_H #include "RectangularMatrix.H" #include "SquareMatrix.H" -#include "complex.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // @@ -146,39 +145,38 @@ namespace Foam { /*---------------------------------------------------------------------------*\ - Class QRMatrix Declaration + Class QRMatrix Declaration \*---------------------------------------------------------------------------*/ template<class MatrixType> class QRMatrix { - public: typedef typename MatrixType::cmptType cmptType; typedef SquareMatrix<cmptType> SMatrix; typedef RectangularMatrix<cmptType> RMatrix; - //- Options for the output matrix forms of QRMatrix - enum outputTypes : uint8_t + //- Options for the decomposition mode + enum modes : uint8_t { - FULL_R = 1, //!< computes only \c R - FULL_QR = 2, //!< computes both \c R and \c Q - REDUCED_R = 3 //!< computes only reduced \c R + FULL = 1, //!< compute full-size decomposition + ECONOMY = 2, //!< compute economy-size decomposition }; - //- Options where to store R - enum storeMethods : uint8_t + //- Options for the output types + enum outputs : uint8_t { - IN_PLACE = 1, //!< replaces input matrix content with \c R - OUT_OF_PLACE = 2 //!< creates new object of \c R + ONLY_Q = 1, //!< compute only Q + ONLY_R = 2, //!< compute only R + BOTH_QR = 3 //!< compute both Q and R }; - //- Options for the computation of column pivoting - enum colPivoting : bool + //- Options for the column pivoting + enum pivoting : bool { - FALSE = false, //!< switches off column pivoting - TRUE = true //!< switches on column pivoting + FALSE = false, //!< switch off column pivoting + TRUE = true //!< switch on column pivoting }; @@ -186,53 +184,50 @@ private: // Private Data - //- Selected option for the output matrix forms of QRMatrix - outputTypes outputType_; + //- Decomposition mode + const modes mode_; - //- Selected option where to store R - const storeMethods storeMethod_; + //- Output type + const outputs output_; - //- Selected option for the computation of column pivoting - const colPivoting colPivot_; + //- Output shape factor based on the decomposition mode + const label sz_; - //- Unitary similarity matrix + //- Unitary/orthogonal matrix MatrixType Q_; //- Upper triangular matrix MatrixType R_; //- Permutation list (if column-pivoting is on) - labelList P_; + labelList p_; // Private Member Functions - //- Compute the QR decomposition without the column pivoting - void qr - ( - MatrixType& A - ); + // Evaluation - //- Compute the QR decomposition with the column pivoting - // (QSB:Fig. 1) - void qrPivot - ( - MatrixType& A - ); + //- Calculate output shape factor based on the decomposition mode + label calcShapeFactor(const MatrixType& A) const; - //- Compute output matrices in selected forms - //- using Householder reflectors - // (M:Section 4) - inline void applyHouseholder - ( - MatrixType& A, - const RMatrix& reflector, - const label k = 0 - ); + //- Compute QR decomposition + void decompose(MatrixType& AT); - //- Solve the linear system with the Field argument x initialized to - //- the appropriate transformed source (e.g. Q.T()*source) - //- and return the solution in x + //- Compute QR decomposition with column pivoting + void decompose(MatrixType& AT, const bool pivot); + + //- Calculate Q + void calcQ(const MatrixType& AT); + + //- Calculate R + void calcR(const MatrixType& AT, const List<cmptType>& diag); + + + // Linear system solution + + //- Solve the linear system with the Field argument x + //- initialized to the appropriate transformed source + //- (e.g. Q.T()*source) and return the solution in x template<template<typename> class ListContainer> void solvex(ListContainer<cmptType>& x) const; @@ -246,33 +241,11 @@ private: ) const; -protected: + //- No copy construct + QRMatrix(const QRMatrix&) = delete; - // Protected Member Functions - - //- Compute Householder reflector on a given matrix column, u - // (M:Eq.6.814) - inline RMatrix householderReflector - ( - RMatrix u - ); - - //- Apply (in-place) Householder reflectors from the left side: u*A - inline void applyLeftReflector - ( - MatrixType& A, - const RMatrix& reflector, - const label k = 0, - const label k1 = 0 - ); - - //- Apply (in-place) Householder reflectors from the right side: (u*A)*u - inline void applyRightReflector - ( - MatrixType& A, - const RMatrix& reflector, - const label k = 0 - ); + //- No copy assignment + QRMatrix& operator=(const QRMatrix&) = delete; public: @@ -280,65 +253,66 @@ public: // Constructors //- Construct null - QRMatrix(); + QRMatrix() = delete; - //- Construct QRMatrix without performing the decomposition - QRMatrix + //- Construct with a matrix and perform QR decomposition + explicit QRMatrix ( - const outputTypes outputType, - const storeMethods storeMethod = storeMethods::OUT_OF_PLACE, - const colPivoting colPivot = colPivoting::FALSE - ); - - //- Construct QRMatrix and perform the QR decomposition - QRMatrix - ( - MatrixType& A, - const outputTypes outputType, - const storeMethods storeMethod = storeMethods::OUT_OF_PLACE, - const colPivoting colPivot = colPivoting::FALSE + const modes mode, + const outputs output, + const bool pivoting, + MatrixType& A ); - //- Construct QRMatrix and perform the QR decomposition - QRMatrix + //- Construct with a const matrix and perform QR decomposition + explicit QRMatrix ( const MatrixType& A, - const outputTypes outputType, - const colPivoting colPivot = colPivoting::FALSE + const modes mode, + const outputs output = outputs::BOTH_QR, + const bool pivoting = false ); // Member Functions - // Information - - //- Return the unitary similarity matrix - // Includes implicit round-to-zero as mutable operation - inline const MatrixType& Q() const; - - //- Return the upper triangular matrix - inline const MatrixType& R() const; - - //- Return the permutation order (P) as a list - inline const labelList& orderP() const; + // Access + + //- Return const reference to Q + const MatrixType& Q() const noexcept + { + return Q_; + } + + //- Return reference to Q + MatrixType& Q() noexcept + { + return Q_; + } + + //- Return const reference to R + const MatrixType& R() const noexcept + { + return R_; + } + + //- Return reference to R + MatrixType& R() noexcept + { + return R_; + } + + //- Return const reference to p + const labelList& p() const noexcept + { + return p_; + } //- Create and return the permutation matrix inline SMatrix P() const; - // Algorithm - - //- Compute QR decomposition according to constructor settings - void decompose - ( - MatrixType& A - ); - - //- Compute QR decomposition according to constructor settings - void decompose - ( - const MatrixType& A - ); + // Linear system solution //- Solve the linear system with the given source //- and return the solution in the argument x @@ -372,41 +346,39 @@ public: const IndirectListBase<cmptType, Addr>& source ) const; - //- Return the inverse of (Q*R), so that solving x = (Q*R).inv()*source - SMatrix inv() const; - - //- Solve a row-echelon-form linear system starting from the bottom - // Back substitution: Ax = b where: - // A = Non-singular upper-triangular square matrix (m-by-m) - // x = Solution (m-by-p) - // b = Source (m-by-p) - RMatrix backSubstitution + //- Solve a row-echelon-form linear system (Ax = b) + //- starting from the bottom by back substitution + // A = R: Non-singular upper-triangular square matrix (m-by-m) + // b: Source (m-by-p) + // x: Solution (m-by-p) + RMatrix solve ( - const SMatrix& A, const RMatrix& b ); + + //- Return the inverse of (Q*R), solving x = (Q*R).inv()*source + SMatrix inv() const; }; +namespace MatrixTools +{ // * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * * // -//- (Out-of-place) Moore-Penrose inverse of singular/non-singular -//- square/rectangular scalar/complex matrices -// (KPP:p. 9834; KP:p. 648) -// The tolerance (i.e. tol) to ensure the R1 matrix full-rank is given as 1e-13 -// in the original paper (KPP:p. 9834). Nonetheless, the tolerance = 1e-5 -// given by (TA; mentioned in (KPP:p. 9832)) was observed to be more robust -// for the tested scenarios. +//- Moore-Penrose inverse of singular/non-singular square/rectangular +//- scalar/complex matrices (KPP:p. 9834; KP:p. 648) +// The tolerance to ensure the R1 matrix full-rank is set to 1e-5 +// by (TA; mentioned in (KPP:p. 9832)) in contrast to 1e-13 (KPP:p. 9834). template<class MatrixType> MatrixType pinv ( const MatrixType& A, - const scalar tol = 1e-5 + scalar tol = 1e-5 ); - // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // +} // End namespace MatrixTools } // End namespace Foam // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // diff --git a/src/OpenFOAM/matrices/QRMatrix/QRMatrixI.H b/src/OpenFOAM/matrices/QRMatrix/QRMatrixI.H index 929f8b6fc89f986388923bf6f51d52718343de9f..bf61a6b4e908908076f35a3eee039f40ed28c917 100644 --- a/src/OpenFOAM/matrices/QRMatrix/QRMatrixI.H +++ b/src/OpenFOAM/matrices/QRMatrix/QRMatrixI.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2016 OpenFOAM Foundation - Copyright (C) 2019 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -26,166 +26,20 @@ License \*---------------------------------------------------------------------------*/ -// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // - -template<class MatrixType> -inline void Foam::QRMatrix<MatrixType>::applyHouseholder -( - MatrixType& A, - const RMatrix& reflector, - const label k -) -{ - applyLeftReflector(A, reflector, k, k); - - if (outputType_ == outputTypes::FULL_QR) - { - applyRightReflector(Q_, reflector, k); - } -} - - -// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * // -template<class MatrixType> -inline Foam::RectangularMatrix<typename MatrixType::cmptType> -Foam::QRMatrix<MatrixType>::householderReflector -( - RMatrix u -) -{ - #ifdef FULLDEBUG - // Check if the given RectangularMatrix is effectively a column vector - if (u.n() != 1) - { - FatalErrorInFunction - << "Input matrix is not a column vector." << exit(FatalError); - } - #endif - - scalar magnitude(mag(u(0,0))); - if (magnitude < VSMALL) - { - magnitude = SMALL; - #if FULLDEBUG - FatalErrorInFunction - << "Almost zero leading elem in Householder matrix." - << abort(FatalError); - #endif - } - - u(0,0) += u(0,0)/magnitude*u.columnNorm(0); - - scalar colNorm(u.columnNorm(0)); - if (colNorm < VSMALL) - { - colNorm = SMALL; - #if FULLDEBUG - FatalErrorInFunction - << "Almost zero norm in the Householder matrix." - << abort(FatalError); - #endif - } - - u /= cmptType(colNorm); - - return u; -} - - -template<class MatrixType> -inline void Foam::QRMatrix<MatrixType>::applyLeftReflector -( - MatrixType& A, - const RMatrix& reflector, - const label k, - const label k1 -) -{ - // const RMatrix& A0(A.subMatrix(k1, k)); - // A0 -= (cmptType(2)*reflector)*(reflector & A0); - - for (label j = k; j < A.n(); ++j) - { - cmptType sum = Zero; - for (label i = 0; i < reflector.m(); ++i) - { - sum += Detail::conj(reflector(i, 0))*A(i + k1, j); - } - - sum *= cmptType(2); - for (label i = 0; i < reflector.m(); ++i) - { - A(i + k1, j) -= reflector(i, 0)*sum; - } - } -} - - -template<class MatrixType> -inline void Foam::QRMatrix<MatrixType>::applyRightReflector -( - MatrixType& A, - const RMatrix& reflector, - const label k -) -{ - // const RMatrix A0(A.subMatrix(0, k)); - // A0 -= ((A0*reflector)^(cmptType(2)*reflector)) - - for (label i = 0; i < A.m(); ++i) - { - cmptType sum = Zero; - for (label j = 0; j < reflector.m(); ++j) - { - sum += A(i, j + k)*reflector(j, 0); - } - - sum *= cmptType(2); - for (label j = 0; j < reflector.m(); ++j) - { - A(i, j + k) -= Detail::conj(reflector(j, 0))*sum; - } - } -} - - // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // template<class MatrixType> -inline const MatrixType& Foam::QRMatrix<MatrixType>::Q() const -{ - const_cast<MatrixType&>(Q_).round(); - - return Q_; -} - - -template<class MatrixType> -inline const MatrixType& Foam::QRMatrix<MatrixType>::R() const -{ - return R_; -} - - -template<class MatrixType> -inline const Foam::labelList& Foam::QRMatrix<MatrixType>::orderP() const -{ - return P_; -} - - -template<class MatrixType> -inline Foam::SquareMatrix<typename Foam::QRMatrix<MatrixType>::cmptType> +inline Foam::SquareMatrix<typename MatrixType::cmptType> Foam::QRMatrix<MatrixType>::P() const { - SquareMatrix<cmptType> permMat(P_.size(), Zero); + SquareMatrix<cmptType> P(p_.size(), Zero); - forAll(P_, jcol) + forAll(p_, jcol) { - permMat(P_[jcol], jcol) = pTraits<cmptType>::one; + P(p_[jcol], jcol) = pTraits<cmptType>::one; } - return permMat; + return P; } diff --git a/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrix.H b/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrix.H index 367f6c5d10a95ea095465804be0453c505ef2476..3e90bff571523f5f49e1537df847091296a2a851 100644 --- a/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrix.H +++ b/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrix.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation - Copyright (C) 2019-2020 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -135,6 +135,9 @@ public: // Member Operators + //- Move assignment + inline void operator=(RectangularMatrix<Type>&& mat); + //- Assign all elements to zero inline void operator=(const Foam::zero); diff --git a/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrixI.H b/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrixI.H index e3164483107c1b4ed9ed76a79ce1afb504f1b233..e4f67dbbb74dbe74dddcfa7d02b1c3d608632f8d 100644 --- a/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrixI.H +++ b/src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrixI.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation - Copyright (C) 2019-2020 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -171,6 +171,16 @@ Foam::RectangularMatrix<Type>::clone() const // * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * // +template<class Type> +inline void Foam::RectangularMatrix<Type>::operator= +( + RectangularMatrix<Type>&& mat +) +{ + this->transfer(mat); +} + + template<class Type> inline void Foam::RectangularMatrix<Type>::operator=(const Foam::zero) { diff --git a/src/OpenFOAM/matrices/SquareMatrix/SquareMatrix.H b/src/OpenFOAM/matrices/SquareMatrix/SquareMatrix.H index 8937cfc775b10d667c9c11df6a64d0f83d5a93cd..fc0a7313e4b3dfbf2813c29693404429cf1f40a8 100644 --- a/src/OpenFOAM/matrices/SquareMatrix/SquareMatrix.H +++ b/src/OpenFOAM/matrices/SquareMatrix/SquareMatrix.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation - Copyright (C) 2019-2020 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -181,6 +181,9 @@ public: // Member Operators + //- Move assignment + inline void operator=(SquareMatrix<Type>&& mat); + //- Assign all elements to zero inline void operator=(const Foam::zero); diff --git a/src/OpenFOAM/matrices/SquareMatrix/SquareMatrixI.H b/src/OpenFOAM/matrices/SquareMatrix/SquareMatrixI.H index f72d26fe775c9f4ea5ceb36862c77b863bd59561..42cd6666eac9a627b9223ef67a24784268fdd9e0 100644 --- a/src/OpenFOAM/matrices/SquareMatrix/SquareMatrixI.H +++ b/src/OpenFOAM/matrices/SquareMatrix/SquareMatrixI.H @@ -6,7 +6,7 @@ \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation - Copyright (C) 2019-2020 OpenCFD Ltd. + Copyright (C) 2019-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -290,6 +290,13 @@ inline bool Foam::SquareMatrix<Type>::tridiagonal() const // * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * // +template<class Type> +inline void Foam::SquareMatrix<Type>::operator=(SquareMatrix<Type>&& mat) +{ + this->transfer(mat); +} + + template<class Type> inline void Foam::SquareMatrix<Type>::operator=(const Foam::zero) { diff --git a/src/functionObjects/field/DMD/DMDModels/derived/STDMD/STDMD.C b/src/functionObjects/field/DMD/DMDModels/derived/STDMD/STDMD.C index bbbdf4e4da8361c99ea70bef64db197e4fa22ad3..7f26f6927f04a2807ccffe384e18597d5992c0f1 100644 --- a/src/functionObjects/field/DMD/DMDModels/derived/STDMD/STDMD.C +++ b/src/functionObjects/field/DMD/DMDModels/derived/STDMD/STDMD.C @@ -5,7 +5,7 @@ \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- - Copyright (C) 2020-2021 OpenCFD Ltd. + Copyright (C) 2020-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. @@ -159,10 +159,11 @@ reducedKoopmanOperator() QRMatrix<RMatrix> QRM ( Qupper_, - QRMatrix<RMatrix>::outputTypes::REDUCED_R, - QRMatrix<RMatrix>::colPivoting::FALSE + QRMatrix<RMatrix>::modes::ECONOMY, + QRMatrix<RMatrix>::outputs::ONLY_R ); - Rx = QRM.R(); + RMatrix& R = QRM.R(); + Rx.transfer(R); } Rx.round(); @@ -228,14 +229,18 @@ reducedKoopmanOperator() } } - // Apply interim QR decomposition on Rx of receiver subset masters - QRMatrix<RMatrix> QRM - ( - Rx, - QRMatrix<RMatrix>::outputTypes::REDUCED_R, - QRMatrix<RMatrix>::storeMethods::IN_PLACE, - QRMatrix<RMatrix>::colPivoting::FALSE - ); + { + // Apply interim QR decomposition + // on Rx of receiver subset masters + QRMatrix<RMatrix> QRM + ( + Rx, + QRMatrix<RMatrix>::modes::ECONOMY, + QRMatrix<RMatrix>::outputs::ONLY_R + ); + RMatrix& R = QRM.R(); + Rx.transfer(R); + } Rx.round(); } @@ -281,26 +286,23 @@ reducedKoopmanOperator() } Info<< tab << "Computing TSQR" << endl; - QRMatrix<RMatrix> QRM - ( - Rx, - QRMatrix<RMatrix>::outputTypes::REDUCED_R, - QRMatrix<RMatrix>::storeMethods::IN_PLACE, - QRMatrix<RMatrix>::colPivoting::FALSE - ); - Rx.round(); - - // Rx produced by TSQR is unique up to the sign, hence the revert - for (scalar& x : Rx) { - x *= -1; + QRMatrix<RMatrix> QRM + ( + Rx, + QRMatrix<RMatrix>::modes::ECONOMY, + QRMatrix<RMatrix>::outputs::ONLY_R + ); + RMatrix& R = QRM.R(); + Rx.transfer(R); } + Rx.round(); Info<< tab << "Computing RxInv" << endl; - RxInv_ = pinv(Rx); + RxInv_ = MatrixTools::pinv(Rx); Info<< tab << "Computing A1" << endl; - A1 = RxInv_*RMatrix(pinv(Rx*(G_^Rx))); + A1 = RxInv_*RMatrix(MatrixTools::pinv(Rx*(G_^Rx))); Rx.clear(); } Pstream::scatter(RxInv_); @@ -323,10 +325,10 @@ reducedKoopmanOperator() else { Info<< tab << "Computing RxInv" << endl; - RxInv_ = pinv(Rx); + RxInv_ = MatrixTools::pinv(Rx); Info<< tab << "Computing A1" << endl; - A1 = RxInv_*RMatrix(pinv(Rx*(G_^Rx))); + A1 = RxInv_*RMatrix(MatrixTools::pinv(Rx*(G_^Rx))); Rx.clear(); Info<< tab << "Computing A2" << endl; @@ -486,7 +488,7 @@ void Foam::DMDModels::STDMD::amplitudes() Info<< tab << "Computing amplitudes" << endl; amps_.resize(R.m()); - const RCMatrix pEvecs(pinv(evecs_)); + const RCMatrix pEvecs(MatrixTools::pinv(evecs_)); // amps_ = pEvecs*R; for (label i = 0; i < amps_.size(); ++i)