1. 02 Jun, 2020 1 commit
    • Mark Olesen's avatar
      ENH: unify use of dictionary method names · 3e43edf0
      Mark Olesen authored
      - previously introduced `getOrDefault` as a dictionary _get_ method,
        now complete the transition and use it everywhere instead of
        `lookupOrDefault`. This avoids mixed usage of the two methods that
        are identical in behaviour, makes for shorter names, and promotes
        the distinction between "lookup" access (ie, return a token stream,
        locate and return an entry) and "get" access (ie, the above with
        conversion to concrete types such as scalar, label etc).
      3e43edf0
  2. 03 Jan, 2020 1 commit
  3. 12 Dec, 2019 2 commits
    • Vaggelis Papoutsis's avatar
      COMP: BFGS and SR1 failed to compile with SP · db8a8404
      Vaggelis Papoutsis authored
      - Failed due to double*Matrix<float> multiplication.
      
      Style changes
      
      - use SquareMatrix with Identity on construction
      
      - use Zero in constructors
      
      - remove trailing space and semi-colons
      db8a8404
    • Vaggelis Papoutsis's avatar
      ENH: New adjont shape optimisation functionality · b8632543
      Vaggelis Papoutsis authored
      The adjoint library is enhanced with new functionality enabling
      automated shape optimisation loops.  A parameterisation scheme based on
      volumetric B-Splines is introduced, the control points of which act as
      the design variables in the optimisation loop [1, 2].  The control
      points of the volumetric B-Splines boxes can be defined in either
      Cartesian or cylindrical coordinates.
      
      The entire loop (solution of the flow and adjoint equations, computation
      of sensitivity derivatives, update of the design variables and mesh) is
      run within adjointOptimisationFoam. A number of methods to update the
      design variables are implemented, including popular Quasi-Newton methods
      like BFGS and methods capable of handling constraints like loop using
      the SQP or constraint projection.
      
      The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
      
      Dr. Evangelos Papoutsis-Kiachagias,
      Konstantinos Gkaragounis,
      Professor Kyriakos Giannakoglou,
      Andy Heather
      
      [1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
      K.C.  Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
      Surrogate Objective Function and the Continuous  Adjoint Method with
      Wall Functions', Computers & Fluids, 122:223-232, 2015
      
      [2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
      K.  Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
      optimization of cars based on continuous adjoint’, Structural and
      Multidisciplinary Optimization, 59(2):675–694, 2019
      b8632543