- 30 Jan, 2020 1 commit
-
-
Mark Olesen authored
-
- 28 Jan, 2020 1 commit
-
-
Mark Olesen authored
-
- 31 Oct, 2019 1 commit
-
-
OpenFOAM bot authored
-
- 06 Feb, 2019 1 commit
-
-
OpenFOAM bot authored
-
- 26 Feb, 2018 1 commit
-
-
Mark Olesen authored
-
- 03 May, 2017 1 commit
-
-
Henry Weller authored
in solidSpecie/transport/const/constAnIsoSolidTransport solidSpecie/transport/const/constIsoSolidTransport solidSpecie/transport/exponential/exponentialSolidTransport solidSpecie/transport/polynomial/polynomialSolidTransport specie/transport/logPolynomial/logPolynomialTransport specie/transport/polynomial/polynomialTransport specie/transport/sutherland/sutherlandTransport Resolves bug-report https://bugs.openfoam.org/view.php?id=2532
-
- 17 Feb, 2017 1 commit
-
-
Henry Weller authored
The fundamental properties provided by the specie class hierarchy were mole-based, i.e. provide the properties per mole whereas the fundamental properties provided by the liquidProperties and solidProperties classes are mass-based, i.e. per unit mass. This inconsistency made it impossible to instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV transport solvers on liquidProperties. In order to combine VoF with film and/or Lagrangian models it is essential that the physical propertied of the three representations of the liquid are consistent which means that it is necessary to instantiate the thermodynamics packages on liquidProperties. This requires either liquidProperties to be rewritten mole-based or the specie classes to be rewritten mass-based. Given that most of OpenFOAM solvers operate mass-based (solve for mass-fractions and provide mass-fractions to sub-models it is more consistent and efficient if the low-level thermodynamics is also mass-based. This commit includes all of the changes necessary for all of the thermodynamics in OpenFOAM to operate mass-based and supports the instantiation of thermodynamics packages on liquidProperties. Note that most users, developers and contributors to OpenFOAM will not notice any difference in the operation of the code except that the confusing nMoles 1; entries in the thermophysicalProperties files are no longer needed or used and have been removed in this commet. The only substantial change to the internals is that species thermodynamics are now "mixed" with mass rather than mole fractions. This is more convenient except for defining reaction equilibrium thermodynamics for which the molar rather than mass composition is usually know. The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and equilibriumFlameT utilities in which the species thermodynamics are pre-multiplied by their molecular mass to effectively convert them to mole-basis to simplify the definition of the reaction equilibrium thermodynamics, e.g. in equilibriumCO // Reactants (mole-based) thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W(); // Oxidant (mole-based) thermo O2(thermoData.subDict("O2")); O2 *= O2.W(); thermo N2(thermoData.subDict("N2")); N2 *= N2.W(); // Intermediates (mole-based) thermo H2(thermoData.subDict("H2")); H2 *= H2.W(); // Products (mole-based) thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W(); thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W(); thermo CO(thermoData.subDict("CO")); CO *= CO.W(); // Product dissociation reactions thermo CO2BreakUp ( CO2 == CO + 0.5*O2 ); thermo H2OBreakUp ( H2O == H2 + 0.5*O2 ); Please report any problems with this substantial but necessary rewrite of the thermodynamic at https://bugs.openfoam.org Henry G. Weller CFD Direct Ltd.
-
- 17 Jan, 2016 1 commit
-
-
Henry Weller authored
Always return void to avoid various bugs associated with automatic type conversion. Resolves request http://openfoam.org/mantisbt/view.php?id=1973
-
- 10 Jan, 2016 1 commit
-
-
Henry Weller authored
-
- 01 Nov, 2015 1 commit
-
-
Henry Weller authored
The new NotImplemented macro uses __PRETTY_FUNCTION__ for GNU compatible compilers otherwise __func__ to provide the function name string.
-
- 31 Oct, 2012 1 commit
-
-
sergio authored
-
- 23 Aug, 2012 1 commit
-
-
Henry authored
New base class for fluid and solid thermo: veryBasicThermo Base class for fluid thermo: basicThermo (derived from veryBasicThermo) Base class for solid thermo: solidThermo (derived from veryBasicThermo) Note in next commit basicThermo -> fluidThermo, veryBasicThermo -> basicThermo
-
- 03 Jul, 2012 1 commit
-
-
sergio authored
tutorial, solvers solve for h in the solid
-