/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2015 OpenFOAM Foundation \\/ M anipulation | Copyright (C) 2016 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "turbulentDFSEMInletFvPatchVectorField.H" #include "volFields.H" #include "addToRunTimeSelectionTable.H" #include "fvPatchFieldMapper.H" #include "momentOfInertia.H" #include "cartesianCS.H" #include "OFstream.H" #include "globalIndex.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // Foam::label Foam::turbulentDFSEMInletFvPatchVectorField::seedIterMax_ = 1000; // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // void Foam::turbulentDFSEMInletFvPatchVectorField::writeEddyOBJ() const { { // Output the bounding box OFstream os(db().time().path()/"eddyBox.obj"); const polyPatch& pp = this->patch().patch(); const labelList& boundaryPoints = pp.boundaryPoints(); const pointField& localPoints = pp.localPoints(); vector offset = patchNormal_*maxSigmaX_; forAll(boundaryPoints, i) { point p = localPoints[boundaryPoints[i]]; p += offset; os << "v " << p.x() << " " << p.y() << " " << p.z() << nl; } forAll(boundaryPoints, i) { point p = localPoints[boundaryPoints[i]]; p -= offset; os << "v " << p.x() << " " << p.y() << " " << p.z() << nl; } // Draw lines between points // Note: need to order to avoid crossing patch //const label nPoint = boundaryPoints.size(); // //forAll(boundaryPoints, i) //{ // label i1 = i; // label i2 = (i + 1) % nPoint; // os << "l " << i1 << " " << i2 << nl; //} // //forAll(boundaryPoints, i) //{ // label i1 = i + nPoint; // label i2 = ((i + 1) % nPoint) + nPoint; // os << "l " << i1 << " " << i2 << nl; //} } { const Time& time = db().time(); OFstream os ( time.path()/"eddies_" + Foam::name(time.timeIndex()) + ".obj" ); label pointOffset = 0; forAll(eddies_, eddyI) { const eddy& e = eddies_[eddyI]; pointOffset += e.writeSurfaceOBJ(pointOffset, patchNormal_, os); } } } void Foam::turbulentDFSEMInletFvPatchVectorField::writeLumleyCoeffs() const { // Output list of xi vs eta // Before interpolation/raw data if (interpolateR_) { AverageIOField Rexp ( IOobject ( "R", this->db().time().caseConstant(), "boundaryData"/patch().name()/"0", this->db(), IOobject::MUST_READ, IOobject::AUTO_WRITE, false ) ); OFstream os(db().time().path()/"lumley_input.out"); os << "# xi" << token::TAB << "eta" << endl; forAll(Rexp, faceI) { // Normalised anisotropy tensor symmTensor devR = dev(Rexp[faceI]/(tr(Rexp[faceI]))); // Second tensor invariant scalar ii = min(0, invariantII(devR)); // Third tensor invariant scalar iii = invariantIII(devR); // xi, eta // See Pope - characterization of Reynolds-stress anisotropy scalar xi = cbrt(0.5*iii); scalar eta = sqrt(-ii/3.0); os << xi << token::TAB << eta << token::TAB << ii << token::TAB << iii << endl; } } // After interpolation { OFstream os(db().time().path()/"lumley_interpolated.out"); os << "# xi" << token::TAB << "eta" << endl; forAll(R_, faceI) { // Normalised anisotropy tensor symmTensor devR = dev(R_[faceI]/(tr(R_[faceI]))); // Second tensor invariant scalar ii = min(0, invariantII(devR)); // Third tensor invariant scalar iii = invariantIII(devR); // xi, eta // See Pope - characterization of Reynolds-stress anisotropy scalar xi = cbrt(0.5*iii); scalar eta = sqrt(-ii/3.0); os << xi << token::TAB << eta << token::TAB << ii << token::TAB << iii << endl; } } } const Foam::pointToPointPlanarInterpolation& Foam::turbulentDFSEMInletFvPatchVectorField::patchMapper() const { // Initialise interpolation (2D planar interpolation by triangulation) if (mapperPtr_.empty()) { // vectorGlobalIOField samplePoints vectorIOField samplePoints ( IOobject ( "points", this->db().time().caseConstant(), "boundaryData"/this->patch().name(), this->db(), IOobject::MUST_READ, IOobject::AUTO_WRITE, false ) ); const fileName samplePointsFile = samplePoints.filePath(); if (debug) { InfoInFunction << " Read " << samplePoints.size() << " sample points from " << samplePointsFile << endl; } // tbd: run-time selection bool nearestOnly = ( !mapMethod_.empty() && mapMethod_ != "planarInterpolation" ); // Allocate the interpolator mapperPtr_.reset ( new pointToPointPlanarInterpolation ( samplePoints, this->patch().patch().faceCentres(), perturb_, nearestOnly ) ); } return mapperPtr_(); } void Foam::turbulentDFSEMInletFvPatchVectorField::initialisePatch() { const vectorField nf(patch().nf()); // Patch normal points into domain patchNormal_ = -gAverage(nf); // Check that patch is planar scalar error = max(magSqr(patchNormal_ + nf)); if (error > SMALL) { WarningInFunction << "Patch " << patch().name() << " is not planar" << endl; } patchNormal_ /= mag(patchNormal_) + ROOTVSMALL; // Decompose the patch faces into triangles to enable point search const polyPatch& patch = this->patch().patch(); const pointField& points = patch.points(); // Triangulate the patch faces and create addressing DynamicList