/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. \*---------------------------------------------------------------------------*/ #include "turbulentTemperatureCoupledBaffleMixedFvPatchScalarField.H" #include "addToRunTimeSelectionTable.H" #include "fvPatchFieldMapper.H" #include "volFields.H" #include "mappedPatchBase.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { namespace compressible { // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // turbulentTemperatureCoupledBaffleMixedFvPatchScalarField:: turbulentTemperatureCoupledBaffleMixedFvPatchScalarField ( const fvPatch& p, const DimensionedField<scalar, volMesh>& iF ) : mixedFvPatchScalarField(p, iF), temperatureCoupledBase(patch(), "undefined", "undefined-K"), neighbourFieldName_("undefined-neighbourFieldName") { this->refValue() = 0.0; this->refGrad() = 0.0; this->valueFraction() = 1.0; } turbulentTemperatureCoupledBaffleMixedFvPatchScalarField:: turbulentTemperatureCoupledBaffleMixedFvPatchScalarField ( const turbulentTemperatureCoupledBaffleMixedFvPatchScalarField& ptf, const fvPatch& p, const DimensionedField<scalar, volMesh>& iF, const fvPatchFieldMapper& mapper ) : mixedFvPatchScalarField(ptf, p, iF, mapper), temperatureCoupledBase(patch(), ptf.KMethod(), ptf.kappaName()), neighbourFieldName_(ptf.neighbourFieldName_) {} turbulentTemperatureCoupledBaffleMixedFvPatchScalarField:: turbulentTemperatureCoupledBaffleMixedFvPatchScalarField ( const fvPatch& p, const DimensionedField<scalar, volMesh>& iF, const dictionary& dict ) : mixedFvPatchScalarField(p, iF), temperatureCoupledBase(patch(), dict), neighbourFieldName_(dict.lookup("neighbourFieldName")) { if (!isA<mappedPatchBase>(this->patch().patch())) { FatalErrorIn ( "turbulentTemperatureCoupledBaffleMixedFvPatchScalarField::" "turbulentTemperatureCoupledBaffleMixedFvPatchScalarField\n" "(\n" " const fvPatch& p,\n" " const DimensionedField<scalar, volMesh>& iF,\n" " const dictionary& dict\n" ")\n" ) << "\n patch type '" << p.type() << "' not type '" << mappedPatchBase::typeName << "'" << "\n for patch " << p.name() << " of field " << dimensionedInternalField().name() << " in file " << dimensionedInternalField().objectPath() << exit(FatalError); } fvPatchScalarField::operator=(scalarField("value", dict, p.size())); if (dict.found("refValue")) { // Full restart refValue() = scalarField("refValue", dict, p.size()); refGrad() = scalarField("refGradient", dict, p.size()); valueFraction() = scalarField("valueFraction", dict, p.size()); } else { // Start from user entered data. Assume fixedValue. refValue() = *this; refGrad() = 0.0; valueFraction() = 1.0; } } turbulentTemperatureCoupledBaffleMixedFvPatchScalarField:: turbulentTemperatureCoupledBaffleMixedFvPatchScalarField ( const turbulentTemperatureCoupledBaffleMixedFvPatchScalarField& wtcsf, const DimensionedField<scalar, volMesh>& iF ) : mixedFvPatchScalarField(wtcsf, iF), temperatureCoupledBase(patch(), wtcsf.KMethod(), wtcsf.kappaName()), neighbourFieldName_(wtcsf.neighbourFieldName_) {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // void turbulentTemperatureCoupledBaffleMixedFvPatchScalarField::updateCoeffs() { if (updated()) { return; } // Since we're inside initEvaluate/evaluate there might be processor // comms underway. Change the tag we use. int oldTag = UPstream::msgType(); UPstream::msgType() = oldTag+1; // Get the coupling information from the mappedPatchBase const mappedPatchBase& mpp = refCast<const mappedPatchBase> ( patch().patch() ); const polyMesh& nbrMesh = mpp.sampleMesh(); const fvPatch& nbrPatch = refCast<const fvMesh> ( nbrMesh ).boundary()[mpp.samplePolyPatch().index()]; // Force recalculation of mapping and schedule const mapDistribute& distMap = mpp.map(); tmp<scalarField> intFld = patchInternalField(); // Calculate the temperature by harmonic averaging // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ const turbulentTemperatureCoupledBaffleMixedFvPatchScalarField& nbrField = refCast < const turbulentTemperatureCoupledBaffleMixedFvPatchScalarField > ( nbrPatch.lookupPatchField<volScalarField, scalar> ( neighbourFieldName_ ) ); // Swap to obtain full local values of neighbour internal field scalarField nbrIntFld(nbrField.patchInternalField()); distMap.distribute(nbrIntFld); // Swap to obtain full local values of neighbour kappa*delta scalarField nbrKDelta(nbrField.kappa(nbrField)*nbrPatch.deltaCoeffs()); distMap.distribute(nbrKDelta); tmp<scalarField> myKDelta = kappa(*this)*patch().deltaCoeffs(); // Both sides agree on // - temperature : (myKDelta*fld + nbrKDelta*nbrFld)/(myKDelta+nbrKDelta) // - gradient : (temperature-fld)*delta // We've got a degree of freedom in how to implement this in a mixed bc. // (what gradient, what fixedValue and mixing coefficient) // Two reasonable choices: // 1. specify above temperature on one side (preferentially the high side) // and above gradient on the other. So this will switch between pure // fixedvalue and pure fixedgradient // 2. specify gradient and temperature such that the equations are the // same on both sides. This leads to the choice of // - refGradient = zero gradient // - refValue = neighbour value // - mixFraction = nbrKDelta / (nbrKDelta + myKDelta()) this->refValue() = nbrIntFld; this->refGrad() = 0.0; this->valueFraction() = nbrKDelta / (nbrKDelta + myKDelta()); mixedFvPatchScalarField::updateCoeffs(); if (debug) { scalar Q = gSum(kappa(*this)*patch().magSf()*snGrad()); Info<< patch().boundaryMesh().mesh().name() << ':' << patch().name() << ':' << this->dimensionedInternalField().name() << " <- " << nbrMesh.name() << ':' << nbrPatch.name() << ':' << this->dimensionedInternalField().name() << " :" << " heat transfer rate:" << Q << " walltemperature " << " min:" << gMin(*this) << " max:" << gMax(*this) << " avg:" << gAverage(*this) << endl; } // Restore tag UPstream::msgType() = oldTag; } void turbulentTemperatureCoupledBaffleMixedFvPatchScalarField::write ( Ostream& os ) const { mixedFvPatchScalarField::write(os); os.writeKeyword("neighbourFieldName")<< neighbourFieldName_ << token::END_STATEMENT << nl; temperatureCoupledBase::write(os); } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // makePatchTypeField ( fvPatchScalarField, turbulentTemperatureCoupledBaffleMixedFvPatchScalarField ); // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace compressible } // End namespace Foam // ************************************************************************* //