/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "PCICG.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template
Foam::PCICG::PCICG
(
const word& fieldName,
const LduMatrix& matrix,
const dictionary& solverDict
)
:
LduMatrix::solver
(
fieldName,
matrix,
solverDict
)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template
typename Foam::SolverPerformance
Foam::PCICG::solve(Field& psi) const
{
const word preconditionerName(this->controlDict_.getWord("preconditioner"));
// --- Setup class containing solver performance data
SolverPerformance solverPerf
(
preconditionerName + typeName,
this->fieldName_
);
label nIter = 0;
label nCells = psi.size();
Type* __restrict__ psiPtr = psi.begin();
Field pA(nCells);
Type* __restrict__ pAPtr = pA.begin();
Field wA(nCells);
Type* __restrict__ wAPtr = wA.begin();
Type wArA = solverPerf.great_*pTraits::one;
Type wArAold = wArA;
// --- Calculate A.psi
this->matrix_.Amul(wA, psi);
// --- Calculate initial residual field
Field rA(this->matrix_.source() - wA);
Type* __restrict__ rAPtr = rA.begin();
// --- Calculate normalisation factor
Type normFactor = this->normFactor(psi, wA, pA);
if (LduMatrix::debug >= 2)
{
Info<< " Normalisation factor = " << normFactor << endl;
}
// --- Calculate normalised residual norm
solverPerf.initialResidual() = cmptDivide(gSumCmptMag(rA), normFactor);
solverPerf.finalResidual() = solverPerf.initialResidual();
// --- Check convergence, solve if not converged
if
(
this->minIter_ > 0
|| !solverPerf.checkConvergence(this->tolerance_, this->relTol_)
)
{
// --- Select and construct the preconditioner
autoPtr::preconditioner>
preconPtr = LduMatrix::preconditioner::New
(
*this,
this->controlDict_
);
// --- Solver iteration
do
{
// --- Store previous wArA
wArAold = wArA;
// --- Precondition residual
preconPtr->precondition(wA, rA);
// --- Update search directions:
wArA = gSumCmptProd(wA, rA);
if (nIter == 0)
{
for (label cell=0; cellmatrix_.Amul(wA, pA);
Type wApA = gSumCmptProd(wA, pA);
// --- Test for singularity
if
(
solverPerf.checkSingularity
(
cmptDivide(cmptMag(wApA), normFactor)
)
)
{
break;
}
// --- Update solution and residual:
Type alpha = cmptDivide
(
wArA,
stabilise(wApA, solverPerf.vsmall_)
);
for (label cell=0; cellmaxIter_
&& !solverPerf.checkConvergence(this->tolerance_, this->relTol_)
)
|| nIter < this->minIter_
);
}
solverPerf.nIterations() =
pTraits::labelType>::one*nIter;
return solverPerf;
}
// ************************************************************************* //