/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. \*---------------------------------------------------------------------------*/ #include "multiphaseMixture.H" #include "alphaContactAngleFvPatchScalarField.H" #include "Time.H" #include "subCycle.H" #include "MULES.H" #include "surfaceInterpolate.H" #include "fvcGrad.H" #include "fvcSnGrad.H" #include "fvcDiv.H" #include "fvcFlux.H" // * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * // const Foam::scalar Foam::multiphaseMixture::convertToRad = Foam::constant::mathematical::pi/180.0; // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // void Foam::multiphaseMixture::calcAlphas() { scalar level = 0.0; alphas_ == 0.0; forAllIter(PtrDictionary<phase>, phases_, iter) { alphas_ += level*iter(); level += 1.0; } alphas_.correctBoundaryConditions(); } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // Foam::multiphaseMixture::multiphaseMixture ( const volVectorField& U, const surfaceScalarField& phi ) : IOdictionary ( IOobject ( "transportProperties", U.time().constant(), U.db(), IOobject::MUST_READ_IF_MODIFIED, IOobject::NO_WRITE ) ), phases_(lookup("phases"), phase::iNew(U, phi)), mesh_(U.mesh()), U_(U), phi_(phi), rhoPhi_ ( IOobject ( "rho*phi", mesh_.time().timeName(), mesh_, IOobject::NO_READ, IOobject::NO_WRITE ), mesh_, dimensionedScalar("rho*phi", dimMass/dimTime, 0.0) ), alphas_ ( IOobject ( "alphas", mesh_.time().timeName(), mesh_, IOobject::NO_READ, IOobject::AUTO_WRITE ), mesh_, dimensionedScalar("alphas", dimless, 0.0), zeroGradientFvPatchScalarField::typeName ), sigmas_(lookup("sigmas")), dimSigma_(1, 0, -2, 0, 0), deltaN_ ( "deltaN", 1e-8/pow(average(mesh_.V()), 1.0/3.0) ) { calcAlphas(); alphas_.write(); } // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * // Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::rho() const { PtrDictionary<phase>::const_iterator iter = phases_.begin(); tmp<volScalarField> trho = iter()*iter().rho(); for (++iter; iter != phases_.end(); ++iter) { trho() += iter()*iter().rho(); } return trho; } Foam::tmp<Foam::scalarField> Foam::multiphaseMixture::rho(const label patchi) const { PtrDictionary<phase>::const_iterator iter = phases_.begin(); tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value(); for (++iter; iter != phases_.end(); ++iter) { trho() += iter().boundaryField()[patchi]*iter().rho().value(); } return trho; } Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::mu() const { PtrDictionary<phase>::const_iterator iter = phases_.begin(); tmp<volScalarField> tmu = iter()*iter().rho()*iter().nu(); for (++iter; iter != phases_.end(); ++iter) { tmu() += iter()*iter().rho()*iter().nu(); } return tmu; } Foam::tmp<Foam::scalarField> Foam::multiphaseMixture::mu(const label patchi) const { PtrDictionary<phase>::const_iterator iter = phases_.begin(); tmp<scalarField> tmu = iter().boundaryField()[patchi] *iter().rho().value() *iter().nu(patchi); for (++iter; iter != phases_.end(); ++iter) { tmu() += iter().boundaryField()[patchi] *iter().rho().value() *iter().nu(patchi); } return tmu; } Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::muf() const { PtrDictionary<phase>::const_iterator iter = phases_.begin(); tmp<surfaceScalarField> tmuf = fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu()); for (++iter; iter != phases_.end(); ++iter) { tmuf() += fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu()); } return tmuf; } Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::nu() const { return mu()/rho(); } Foam::tmp<Foam::scalarField> Foam::multiphaseMixture::nu(const label patchi) const { return mu(patchi)/rho(patchi); } Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::nuf() const { return muf()/fvc::interpolate(rho()); } Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::surfaceTensionForce() const { tmp<surfaceScalarField> tstf ( new surfaceScalarField ( IOobject ( "surfaceTensionForce", mesh_.time().timeName(), mesh_ ), mesh_, dimensionedScalar ( "surfaceTensionForce", dimensionSet(1, -2, -2, 0, 0), 0.0 ) ) ); surfaceScalarField& stf = tstf(); forAllConstIter(PtrDictionary<phase>, phases_, iter1) { const phase& alpha1 = iter1(); PtrDictionary<phase>::const_iterator iter2 = iter1; ++iter2; for (; iter2 != phases_.end(); ++iter2) { const phase& alpha2 = iter2(); sigmaTable::const_iterator sigma = sigmas_.find(interfacePair(alpha1, alpha2)); if (sigma == sigmas_.end()) { FatalErrorIn("multiphaseMixture::surfaceTensionForce() const") << "Cannot find interface " << interfacePair(alpha1, alpha2) << " in list of sigma values" << exit(FatalError); } stf += dimensionedScalar("sigma", dimSigma_, sigma()) *fvc::interpolate(K(alpha1, alpha2))* ( fvc::interpolate(alpha2)*fvc::snGrad(alpha1) - fvc::interpolate(alpha1)*fvc::snGrad(alpha2) ); } } return tstf; } void Foam::multiphaseMixture::solve() { forAllIter(PtrDictionary<phase>, phases_, iter) { iter().correct(); } const Time& runTime = mesh_.time(); volScalarField& alpha = phases_.first(); const dictionary& alphaControls = mesh_.solverDict("alpha"); label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles"))); scalar cAlpha(readScalar(alphaControls.lookup("cAlpha"))); if (nAlphaSubCycles > 1) { surfaceScalarField rhoPhiSum ( IOobject ( "rhoPhiSum", runTime.timeName(), mesh_ ), mesh_, dimensionedScalar("0", rhoPhi_.dimensions(), 0) ); dimensionedScalar totalDeltaT = runTime.deltaT(); for ( subCycle<volScalarField> alphaSubCycle(alpha, nAlphaSubCycles); !(++alphaSubCycle).end(); ) { solveAlphas(cAlpha); rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi_; } rhoPhi_ = rhoPhiSum; } else { solveAlphas(cAlpha); } } void Foam::multiphaseMixture::correct() {} Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseMixture::nHatfv ( const volScalarField& alpha1, const volScalarField& alpha2 ) const { /* // Cell gradient of alpha volVectorField gradAlpha = alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2); // Interpolated face-gradient of alpha surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha); */ surfaceVectorField gradAlphaf ( fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1)) - fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2)) ); // Face unit interface normal return gradAlphaf/(mag(gradAlphaf) + deltaN_); } Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::nHatf ( const volScalarField& alpha1, const volScalarField& alpha2 ) const { // Face unit interface normal flux return nHatfv(alpha1, alpha2) & mesh_.Sf(); } // Correction for the boundary condition on the unit normal nHat on // walls to produce the correct contact angle. // The dynamic contact angle is calculated from the component of the // velocity on the direction of the interface, parallel to the wall. void Foam::multiphaseMixture::correctContactAngle ( const phase& alpha1, const phase& alpha2, surfaceVectorField::GeometricBoundaryField& nHatb ) const { const volScalarField::GeometricBoundaryField& gbf = alpha1.boundaryField(); const fvBoundaryMesh& boundary = mesh_.boundary(); forAll(boundary, patchi) { if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi])) { const alphaContactAngleFvPatchScalarField& acap = refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]); vectorField& nHatPatch = nHatb[patchi]; vectorField AfHatPatch ( mesh_.Sf().boundaryField()[patchi] /mesh_.magSf().boundaryField()[patchi] ); alphaContactAngleFvPatchScalarField::thetaPropsTable:: const_iterator tp = acap.thetaProps().find(interfacePair(alpha1, alpha2)); if (tp == acap.thetaProps().end()) { FatalErrorIn ( "multiphaseMixture::correctContactAngle" "(const phase& alpha1, const phase& alpha2, " "fvPatchVectorFieldField& nHatb) const" ) << "Cannot find interface " << interfacePair(alpha1, alpha2) << "\n in table of theta properties for patch " << acap.patch().name() << exit(FatalError); } bool matched = (tp.key().first() == alpha1.name()); scalar theta0 = convertToRad*tp().theta0(matched); scalarField theta(boundary[patchi].size(), theta0); scalar uTheta = tp().uTheta(); // Calculate the dynamic contact angle if required if (uTheta > SMALL) { scalar thetaA = convertToRad*tp().thetaA(matched); scalar thetaR = convertToRad*tp().thetaR(matched); // Calculated the component of the velocity parallel to the wall vectorField Uwall ( U_.boundaryField()[patchi].patchInternalField() - U_.boundaryField()[patchi] ); Uwall -= (AfHatPatch & Uwall)*AfHatPatch; // Find the direction of the interface parallel to the wall vectorField nWall ( nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch ); // Normalise nWall nWall /= (mag(nWall) + SMALL); // Calculate Uwall resolved normal to the interface parallel to // the interface scalarField uwall(nWall & Uwall); theta += (thetaA - thetaR)*tanh(uwall/uTheta); } // Reset nHatPatch to correspond to the contact angle scalarField a12(nHatPatch & AfHatPatch); scalarField b1(cos(theta)); scalarField b2(nHatPatch.size()); forAll(b2, facei) { b2[facei] = cos(acos(a12[facei]) - theta[facei]); } scalarField det(1.0 - a12*a12); scalarField a((b1 - a12*b2)/det); scalarField b((b2 - a12*b1)/det); nHatPatch = a*AfHatPatch + b*nHatPatch; nHatPatch /= (mag(nHatPatch) + deltaN_.value()); } } } Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::K ( const phase& alpha1, const phase& alpha2 ) const { tmp<surfaceVectorField> tnHatfv = nHatfv(alpha1, alpha2); correctContactAngle(alpha1, alpha2, tnHatfv().boundaryField()); // Simple expression for curvature return -fvc::div(tnHatfv & mesh_.Sf()); } Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::nearInterface() const { tmp<volScalarField> tnearInt ( new volScalarField ( IOobject ( "nearInterface", mesh_.time().timeName(), mesh_ ), mesh_, dimensionedScalar("nearInterface", dimless, 0.0) ) ); forAllConstIter(PtrDictionary<phase>, phases_, iter) { tnearInt() = max(tnearInt(), pos(iter() - 0.01)*pos(0.99 - iter())); } return tnearInt; } void Foam::multiphaseMixture::solveAlphas ( const scalar cAlpha ) { static label nSolves=-1; nSolves++; word alphaScheme("div(phi,alpha)"); word alpharScheme("div(phirb,alpha)"); surfaceScalarField phic(mag(phi_/mesh_.magSf())); phic = min(cAlpha*phic, max(phic)); PtrList<surfaceScalarField> phiAlphaCorrs(phases_.size()); int phasei = 0; forAllIter(PtrDictionary<phase>, phases_, iter) { phase& alpha = iter(); phiAlphaCorrs.set ( phasei, new surfaceScalarField ( fvc::flux ( phi_, alpha, alphaScheme ) ) ); surfaceScalarField& phiAlphaCorr = phiAlphaCorrs[phasei]; forAllIter(PtrDictionary<phase>, phases_, iter2) { phase& alpha2 = iter2(); if (&alpha2 == &alpha) continue; surfaceScalarField phir(phic*nHatf(alpha, alpha2)); phiAlphaCorr += fvc::flux ( -fvc::flux(-phir, alpha2, alpharScheme), alpha, alpharScheme ); } MULES::limit ( geometricOneField(), alpha, phi_, phiAlphaCorr, zeroField(), zeroField(), 1, 0, 3, true ); phasei++; } MULES::limitSum(phiAlphaCorrs); rhoPhi_ = dimensionedScalar("0", dimensionSet(1, 0, -1, 0, 0), 0); volScalarField sumAlpha ( IOobject ( "sumAlpha", mesh_.time().timeName(), mesh_ ), mesh_, dimensionedScalar("sumAlpha", dimless, 0) ); phasei = 0; forAllIter(PtrDictionary<phase>, phases_, iter) { phase& alpha = iter(); surfaceScalarField& phiAlpha = phiAlphaCorrs[phasei]; phiAlpha += upwind<scalar>(mesh_, phi_).flux(alpha); MULES::explicitSolve ( geometricOneField(), alpha, phiAlpha, zeroField(), zeroField() ); rhoPhi_ += phiAlpha*alpha.rho(); Info<< alpha.name() << " volume fraction, min, max = " << alpha.weightedAverage(mesh_.V()).value() << ' ' << min(alpha).value() << ' ' << max(alpha).value() << endl; sumAlpha += alpha; phasei++; } Info<< "Phase-sum volume fraction, min, max = " << sumAlpha.weightedAverage(mesh_.V()).value() << ' ' << min(sumAlpha).value() << ' ' << max(sumAlpha).value() << endl; calcAlphas(); } bool Foam::multiphaseMixture::read() { if (transportModel::read()) { bool readOK = true; PtrList<entry> phaseData(lookup("phases")); label phasei = 0; forAllIter(PtrDictionary<phase>, phases_, iter) { readOK &= iter().read(phaseData[phasei++].dict()); } lookup("sigmas") >> sigmas_; return readOK; } else { return false; } } // ************************************************************************* //