Skip to content
Snippets Groups Projects
Commit 9310c7c2 authored by Matthias Rauter's avatar Matthias Rauter Committed by Mark OLESEN
Browse files

DOC: updated README

parent 69d0db28
No related branches found
No related tags found
1 merge request!9updates v2306
...@@ -9,46 +9,56 @@ ...@@ -9,46 +9,56 @@
## Introduction ## Introduction
This module provides a model and tools for the simulation of **dense snow avalanches** and other **gravitational mass flows**. A **depth-integrated flow model** is applied and solved with the **Finite Area Method**. Tools for simulation setup is provided. This module provides a model and tools for the simulation of:
* **dense snow avalanches**,
* **powder snow avalanches**,
* **mixed snow avalanches**,
* **turbidity currents** and
* other **gravitational mass flows** that fit into the scheme. This can either be flows of water, debris flows or pyroclastic flows. However, some adaptions to e.g. the friction model might be required.
A **depth-integrated flow model** is applied and solved with the **Finite Area Method**. Tools for simulation setup and post processing are provided. Tools focus on a tight integration with Geographic Information System and provide in- and output routines for Shapefiles and Gridfiles.
**Note**: Variable names differ between the academic publications and the code and this documentation. The reason is that some of the variable names in literature (e.g. $\phi$ for phase fraction) are already used in the internals of OpenFOAM (where phi is the flux). Therefore the full equations are repeated here.
**Note**: This readme and its latex syntax aim to look good when used with LaTeX and StackEdit. Some interpreter struggle to parse the math expression.
## Copyright ## Copyright
##### Source code ### Source code
Licence: GPL-3.0-or-later Licence: GPL-3.0-or-laters
##### Real case example ### Real case example
#### Wolfsgrube
The digital elevation model for tutorial **wolfsgrube** is provided by [AMT DER TIROLER LANDESREGIERUNG (AdTLR) Abteilung Geoinformation](https://gis.tirol.gv.at/ogd/geografie_planung/DGM/LA_DGM10.zip) The digital elevation model for tutorial **wolfsgrube** is provided by [AMT DER TIROLER LANDESREGIERUNG (AdTLR) Abteilung Geoinformation](https://gis.tirol.gv.at/ogd/geografie_planung/DGM/LA_DGM10.zip)
Licence: Creative Commons Attribution 3.0 License (CC-BY). Licence: Creative Commons Attribution 3.0 License (CC-BY).
#### Monterey Canyon
The digital elevation model for tutorial **montereycanyon** is provided by [Monterey Bay Aquarium Research Institute (MBARI)](http://www3.mbari.org/data/mapping/Monterey_Bay/default.htm) The digital elevation model for tutorial **montereycanyon** is provided by [Monterey Bay Aquarium Research Institute (MBARI)](http://www3.mbari.org/data/mapping/Monterey_Bay/default.htm)
Licence: MBARI provides these data "as is", with no warranty, express or implied, of the data quality or consistency. Data are provided without support and without obligation on the part of the Monterey Bay Aquarium Research Institute to assist in its use, correction, modification, or enhancement. Licence: *MBARI provides these data "as is", with no warranty, express or implied, of the data quality or consistency. Data are provided without support and without obligation on the part of the Monterey Bay Aquarium Research Institute to assist in its use, correction, modification, or enhancement.*
## Solver ## Models (Solver)
### faSavageHutterFoam ### faSavageHutterFoam
The implicit solver can be found in `applications/solver/faSavageHutterFoam`. It can be called with `faSavageHutterFoam`. The solver can be found `applications/solver/faSavageHutterFoam` and called with `faSavageHutterFoam` if the OpenFOAM module is loaded. For some options see `faSavageHutterFoam -help`.
The solver is based on a depth-integrated flow model, similar to the Savage-Hutter model ([Savage and Hutter; 1989](https://dx.doi.org/10.1017/S0022112089000340), [1991](https://dx.doi.org/10.1007/BF01175958)). The solver is based on a depth-integrated flow model, similar to the Savage-Hutter model ([Savage and Hutter; 1989](https://dx.doi.org/10.1017/S0022112089000340), [1991](https://dx.doi.org/10.1007/BF01175958)).
The theory of this solver is described by [Rauter and Tukovic (2018)](https://dx.doi.org/10.1016/j.compfluid.2018.02.017). The respective preprint is availabel on [arxiv.org](https://arxiv.org/abs/1802.05229). The theory of this solver is described by [Rauter and Tukovic (2018)](https://dx.doi.org/10.1016/j.compfluid.2018.02.017). The respective preprint is availabel on [arxiv.org](https://arxiv.org/abs/1802.05229).
The application to natural terrain is described by [Rauter, Kofler, Huber and Fellin (2018)](https://doi.org/10.5194/gmd-11-2923-2018). The application to natural terrain is described by [Rauter, Kofler, Huber and Fellin (2018)](https://doi.org/10.5194/gmd-11-2923-2018).
The **governing equations** can be expressed in terms of surface partial differential equations as The **governing equations** can be expressed in terms of surface partial differential equations as
$\dfrac{\partial h}{\partial t} + \boldsymbol{\nabla}{\cdot}\left(h\,\mathbf{\overline{u}}\right) = S_e-S_d,$
$\dfrac{\partial h}{\partial t} + \boldsymbol{\nabla}{\cdot}\left(h\,\mathbf{\overline{u}}\right) = S_e-S_d,$ (1) $\dfrac{\partial\,\left(h\,\mathbf{\overline{u}}\right)}{\partial t} + \boldsymbol{\nabla}_{\mathrm{s}}{\cdot}\left(h\,\mathbf{\overline{u}}\,\mathbf{\overline{u}}\right) = -\dfrac{1}{\rho}\boldsymbol{\tau}_{\mathrm{b}} + h\,\mathbf{g}_{\mathrm{s}} - \dfrac{1}{2\,\rho}\boldsymbol{\nabla}_{\mathrm{s}}\,\left(h\,p_{\mathrm{b}}\right),$
$\dfrac{\partial\,\left(h\,\mathbf{\overline{u}}\right)}{\partial t} + \boldsymbol{\nabla}_{\mathrm{s}}{\cdot}\left(h\,\mathbf{\overline{u}}\,\mathbf{\overline{u}}\right) = -\dfrac{1}{\rho}\boldsymbol{\tau}_{\mathrm{b}} + h\,\mathbf{g}_{\mathrm{s}} - \dfrac{1}{2\,\rho}\boldsymbol{\nabla}_{\mathrm{s}}\,\left(h\,p_{\mathrm{b}}\right),$ (2)
$\boldsymbol{\nabla}_{\mathrm{n}}{\cdot}\left(h\,\mathbf{\overline{u}}\,\mathbf{\overline{u}}\right) = h\,\mathbf{g}_{\mathrm{n}} - \dfrac{1}{2\,\rho}\boldsymbol{\nabla}_{\mathrm{n}}\,\left(h\,p_{\mathrm{b}}\right) - \dfrac{1}{\rho}\mathbf{n}_{\mathrm{b}}\,p_{\mathrm{b}},$
$\boldsymbol{\nabla}_{\mathrm{n}}{\cdot}\left(h\,\mathbf{\overline{u}}\,\mathbf{\overline{u}}\right) = h\,\mathbf{g}_{\mathrm{n}} - \dfrac{1}{2\,\rho}\boldsymbol{\nabla}_{\mathrm{n}}\,\left(h\,p_{\mathrm{b}}\right) - \dfrac{1}{\rho}\mathbf{n}_{\mathrm{b}}\,p_{\mathrm{b}},$ (3)
with **unknown flow fields** with **unknown flow fields**
* depth-averaged flow velocity $\mathbf{\overline{u}}$, * depth-averaged flow velocity $\mathbf{\overline{u}}$,
...@@ -60,17 +70,16 @@ with **unknown flow fields** ...@@ -60,17 +70,16 @@ with **unknown flow fields**
* the gravitational acceleration $\mathbf{g} = \mathbf{g}_{\mathrm{s}}+\mathbf{g}_{\mathrm{n}}$. * the gravitational acceleration $\mathbf{g} = \mathbf{g}_{\mathrm{s}}+\mathbf{g}_{\mathrm{n}}$.
**User-selectable models** (see below) have to be provided for **User-selectable models** (see below) have to be provided for
* the basal friction $\boldsymbol{\tau}_{\mathrm{b}}$, * the basal friction $\boldsymbol{\tau}_{\mathrm{b}}$ (`frictionModel`)
* the volumetric entrainment rate $S_e$ and * the volumetric entrainment rate $S_e$ (`entrainmentModel`)
* the deposition rate $S_d$. * the volumetric deposition rate $S_d$ (`depositionModel`)
**Initial conditions** have to be provided for **Initial conditions** have to be provided for
* the flow thickness $h$, * the flow thickness $h$,
* the depth-integrated flow velocty $\mathbf{\overline{u}}$ and * the depth-integrated flow velocty $\mathbf{\overline{u}}$ and
* the mountain snow cover thickness $h_{\mathrm{msc}}$ (only if entrainment/deposition is active). * the mountain snow cover thickness $h_{\mathrm{msc}}$ (for entrainment of fresh snow).
**The classic surface pressure equation** (e.g. [Fischer et al. 2013](dx.doi.org/10.1016/j.coldregions.2012.01.005)) can be applied by **The classic surface pressure equation** (e.g. [Fischer et al. 2013](dx.doi.org/10.1016/j.coldregions.2012.01.005)) can be applied by deactivating the second term on the right hand side of Equation (3) (switch `pressureFeedback` in `tansportProperties`).
* deactivating the second term on the right hand side of Equation (3) (switch pressureFeedback in tansportProperties).
**Spatial differential operators** **Spatial differential operators**
...@@ -86,23 +95,93 @@ The numerical solution is based on the **Finite Area Method**. ...@@ -86,23 +95,93 @@ The numerical solution is based on the **Finite Area Method**.
#### Friction models ### faParkerFukushimaFoam
This solver implements the Turbidity Current model of [Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404).
It can be found in `applications/solver/faParkerFukushimaFoam` and called with `faParkerFukushimaFoam`. For some options see `faParkerFukushimaFoam -help`.
$\dfrac{\partial\, h}{\partial t} + \nabla\cdot\left(h\,\mathbf{\overline{u}}\right) = S_e^{(w)}$
$\dfrac{\partial\, h\,\mathbf{\overline{u}}}{\partial t} + \nabla_{\mathrm{s}}\cdot\left(h\,\mathbf{\overline{u}}\,\mathbf{\overline{u}}\right) = R\,\mathbf{g}_{\mathrm{s}}\,\overline{c}\,h-\dfrac{1}{2}\,R\,g_{\mathrm{n}}\,\nabla_{\mathrm{s}}\left(\overline{c}\,h^2\right)-\boldsymbol{\tau}_{\mathrm{b}}$
$\dfrac{\partial\, \overline{c}\,h}{\partial t} + \nabla\cdot\left(\overline{c}\,h\,\mathbf{\overline{u}}\right) = S_e^{(s)}-S_d^{(s)}$
with **unknown flow fields**
* depth-averaged flow velocity $\mathbf{\overline{u}}$,
* flow thickness $h$ and
* depth-averaged sediment (or particle) concentration $\overline{c}$.
**Constant parameters** are
* the density ration between sediment and water $R$ (or more generally, particles and fluid) and
* the gravitational acceleration $\mathbf{g} = \mathbf{g}_{\mathrm{s}}+\mathbf{g}_{\mathrm{n}}$.
**User-selectable models** (see below) have to be provided for
* the basal friction $\boldsymbol{\tau}_{\mathrm{b}}$ (`suspensionFrictionModel`)
* the volumetric sediment entrainment rate $S_e^{(s)}$ (`suspensionEntrainmentModel`)
* the volumetric sediment deposition rate $S_e^{(s)}$ (`suspensionDepositionModel`)
* the volumetric ambient fluid entrainment rate $S_e^{(w)}$ (`ambientEntrainmentModel`)
**Initial conditions and boundary conditions** have to be provided for
* the flow thickness $h$,
* the depth-integrated flow velocty $\mathbf{\overline{u}}$ and
* the depth-integrated sediment concentration $\overline{c}$
* the erodible sediment thickness $h_{\mathrm{msc}}$
### faTwoLayerAvalancheFoam
The solver implements a two layer approach for a mixed snow avalanche. The dense flow layer is simulated with the Savage-Hutter model ([Savage and Hutter; 1989](https://dx.doi.org/10.1017/S0022112089000340), [1991](https://dx.doi.org/10.1007/BF01175958)), similar to faSavageHutterFoam and the powder cloud layer is simulated with the model of [Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404), similar to faParkerFukushima. The equations can be found in the sections above. It can be found in `applications/solver/faTwoLayerAvalancheFoam` and called with `faTwoLayerAvalancheFoam`. For some options see `faTwoLayerAvalancheFoam -help`.
The dense flow model fields are marked with a index 1, the suspension flow fields are marked with an index 2. The two layers are coupled with two fluxes: The suspension deposition that brings particles from the suspension to the dense core and the dense core fluidisation flux that brings particles from the dense core to the suspension, $S_f$.
$\dfrac{\partial h_1}{\partial t} + \nabla^\Gamma\cdot\left(h_1\,\mathbf{\overline{u}}_1\right) = S_{e,1} - S_{d,1} - S_{f} + S_{d, 2}^{(s)}$
$\dfrac{\partial h_1\,\mathbf{\overline{u}}_1}{\partial t} + \xi_1\,\nabla^\Gamma_{\mathrm{s}}\cdot\left(h_1\,\mathbf{\overline{u}}_1\,\mathbf{\overline{u}}_1\right) = -\dfrac{\boldsymbol\tau_{b,1}}{\rho_{1}} + h_1\,\mathbf{g}_{\mathrm{s}} - \dfrac{1}{2\,\rho_1}\,\nabla^\Gamma_{\mathrm{s}}\left(h_1\,p_{1}\right)$
$\xi_1\,\nabla^\Gamma_{\mathrm{n}}\cdot\left(h_1\,\mathbf{\overline{u}}_1\,\mathbf{\overline{u}}_1\right) = h_1\,\mathbf{g}_{\mathrm{n}} - \dfrac{1}{2\,\rho_1}\,\nabla^\Gamma\left(h_1\,p_{1}\right) - \dfrac{1}{\rho_1}\,\mathbf{n}^\Gamma\,p_{1}$
$\dfrac{\partial\,h_2}{\partial t} + \mathbf\nabla^\Gamma\cdot\left(h_2\,\mathbf{\overline{u}}_2\right) = S_{e,2}^{(w)}$
$\dfrac{\partial\,c_2\,h_2}{\partial t} + \mathbf\nabla^\Gamma\cdot\left(c_2\,h_2\,\overline{\mathbf{u}}_2\right) = S_{e,2}^{(s)} - S_{d,2}^{(s)} + S_{f}$
$\dfrac{\partial\,\left(1+R\,c_2\right)\,h_2\,\mathbf{\overline{u}}_2}{\partial t} + \xi_2\,\mathbf\nabla^\Gamma_{\mathrm{s}}\cdot\left(\left(1+R\,c_2\right)\,h_2\,\mathbf{\overline{u}}_2\,\mathbf{\overline{u}}_2\right)
= -\dfrac{\mathbf\tau_{2}}{\rho_\mathrm{c}} + R\,c_2\,h_2\,\mathbf{g}_{\mathrm{s}} - \dfrac{1}{2}\,\mathbf\nabla^\Gamma_{\mathrm{s}}\left(\left(1+R\,c_2\right)\,g_{n}\,h_2^2\,\right)$
Further, the coupling flux $S_f$ is associated with a momentum flux that is not shown in the Equations for simplicity. The suspension entrainment $S_{e,2}^{(s)}$ is only active if there is no dense flow present at the respective position.
**User-selectable models** (see below) have to be provided for:
* the dense flow basal friction $\boldsymbol{\tau}_{b, 1}$ (`frictionModel`)
* the dense flow entrainment rate $S_{e,1}$ (`entrainmentModel`)
* the dense flow deposition rate $S_{d,1}$ (`depositionModel`)
* the dense flow fluidisation rate $S_f$ (`couplingModel`)
* the suspension basal friction $\boldsymbol{\tau}_{b,2}$ (`suspensionFrictionModel`)
* the suspension entrainment rate $S_{e,2}^{(s)}$ (`suspensionEntrainmentModel`)
* the suspension deposition rate $S_{d,2}^{(s)}$ (`suspensionDepositionModel`)
* the suspension ambient fluid entrainment rate $S_{e,2}^{(w)}$ (`ambientEntrainmentModel`)
The friction model describes the friction $\boldsymbol{\tau}_{\mathrm{b}}$ between flowing mass (avalanche) and the terrain. The direction of the friction vector always aligns with the velocity vector $\mathbf{\overline{u}}$. ## Friction models
### Dense flow friction models (frictionModel)
The friction model describes the friction $\boldsymbol{\tau}_{\mathrm{b}}$ between flowing mass (avalanche) and the terrain. The direction of the friction vector always aligns with the velocity vector $\mathbf{\overline{u}}$. These models are used in the solvers:
* faSavageHutterFoam
* faTwoLayerAvalancheFoam
The friction model has to be set in the file `constant/transportProperties` (see below). The friction model has to be set in the file `constant/transportProperties` (see below).
Friction models can be found in the folder `src/avalanche/friction`. These friction models can be found in the folder `src/avalanche/friction` and are based on the class `frictionModel`.
To implement a new friction model, copy an existing one, rename it and modify it.
Currently there are the following friction models available: Currently there are the following friction models available:
* DarcyWeisbach (Liquid) * DarcyWeisbach (Liquid, formerly used for solver tests)
* ManningStrickler (Liquid) * ManningStrickler (Liquid, formerly used for solver tests)
* MuI (Granular flow, avalanche) * MuI (Granular flow, avalanche)
* PoliquenForterre (Granular flow, avalanche) * PoliquenForterre (Granular flow, avalanche)
* Voellmy (Granular flow, avalanche) * Voellmy (Granular flow, avalanche)
* kt (Granular flow, avalanche) * kt (Granular flow, avalanche)
###### Darcy-Weisbach #### Darcy-Weisbach
`DarcyWeisbach` `DarcyWeisbach`
...@@ -122,7 +201,7 @@ DarcyWeisbachCoeffs ...@@ -122,7 +201,7 @@ DarcyWeisbachCoeffs
} }
``` ```
###### Manning-Strickler #### Manning-Strickler
`ManningStrickler` `ManningStrickler`
...@@ -141,7 +220,7 @@ ManningStricklerCoeffs ...@@ -141,7 +220,7 @@ ManningStricklerCoeffs
} }
``` ```
###### Voellmy #### Voellmy
`Voellmy` `Voellmy`
...@@ -162,7 +241,7 @@ VoellmyCoeffs ...@@ -162,7 +241,7 @@ VoellmyCoeffs
} }
``` ```
###### Kinetic Theory #### Kinetic Theory
`kt` `kt`
...@@ -181,7 +260,7 @@ ktCoeffs ...@@ -181,7 +260,7 @@ ktCoeffs
} }
``` ```
###### mu(I) #### mu(I)
`muI` `muI`
...@@ -189,15 +268,15 @@ Popular mu(I) following [Jop et al. (2006)](dx.doi.org/10.1038/nature04801) (see ...@@ -189,15 +268,15 @@ Popular mu(I) following [Jop et al. (2006)](dx.doi.org/10.1038/nature04801) (see
Shear rate at the base following Bagnold Profile: Shear rate at the base following Bagnold Profile:
$ \dot{\gamma} = \dfrac{5}{2}\,\dfrac{|{\bf u}|}{h}$ $\dot{\gamma} = \dfrac{5}{2}\,\dfrac{|{\bf u}|}{h}$
Inertia number: Inertia number:
$ I = \dfrac{\dot{\gamma}\,d}{\sqrt{p/\rho_p}}$ $I = \dfrac{\dot{\gamma}\,d}{\sqrt{p/\rho_p}}$
Friction coefficient depending on inertia number: Friction coefficient depending on inertia number:
$ \mu = \mu_s + \dfrac{\mu_2+\mu_s}{I_0/I+1}$ $\mu = \mu_s + \dfrac{\mu_2+\mu_s}{I_0/I+1}$
Basal friction: Basal friction:
...@@ -219,7 +298,7 @@ MuICoeffs ...@@ -219,7 +298,7 @@ MuICoeffs
I_0 I_0 [0 0 0 0 0 0 0 ] 0.30; //reference inertia number I_0 I_0 [0 0 0 0 0 0 0 ] 0.30; //reference inertia number
} }
``` ```
###### Poliquen Forterre (2008) #### Poliquen Forterre (2008)
`PoliquenForterre` `PoliquenForterre`
...@@ -228,13 +307,13 @@ See also [Johnson and Gray, (2011)](http://www.maths.manchester.ac.uk/~ngray/Pap ...@@ -228,13 +307,13 @@ See also [Johnson and Gray, (2011)](http://www.maths.manchester.ac.uk/~ngray/Pap
$Fr = \dfrac{|{\bf u}|}{\sqrt{h\,g_n}}$ $Fr = \dfrac{|{\bf u}|}{\sqrt{h\,g_n}}$
$h_{s} = h\dfrac{\beta}{Fr}$ $h_{\mathrm{s}} = h\dfrac{\beta}{Fr}$
$\mu_{stop} = \tan(\zeta_1)+\dfrac{\tan(\zeta_2)-\tan(\zeta_1)}{1+h_s/L} $ $\mu_{\mathrm{stop}} = \tan(\zeta_1)+\dfrac{\tan(\zeta_2)-\tan(\zeta_1)}{1+h_s/L}$
$\mu_{start} = \tan(\zeta_3)+(\tan(\zeta_2)-\tan(\zeta_1))\,\exp(-h_s/L)$ $\mu_{\mathrm{start}} = \tan(\zeta_3)+(\tan(\zeta_2)-\tan(\zeta_1))\,\exp(-h_s/L)$
$\mu = \left(\dfrac{Fr}{\beta}\right)^{\gamma} (\mu_{stop}-\mu_{start})+\mu_{start}$ $\mu = \left(\dfrac{Fr}{\beta}\right)^{\gamma} (\mu_{\mathrm{stop}}-\mu_{\mathrm{start}})+\mu_{\mathrm{start}}$
$|{\boldsymbol \tau}| = \mu(I)\,p$ $|{\boldsymbol \tau}| = \mu(I)\,p$
...@@ -257,9 +336,93 @@ PoliquenForterreCoeffs ...@@ -257,9 +336,93 @@ PoliquenForterreCoeffs
} }
``` ```
#### Entrainment models
Entrainment describes the erosion of the intact snow cover and intake of the respective material $S_e\,(\mathrm{m/s})$ into the avalanche. It is assumed that the snow cover has the same density as the avalanche.
### Suspension friction models (suspensionFrictionModels)
The friction model describes the friction $\boldsymbol{\tau}_{\mathrm{b}}$ between flowing mass (turbidity current) and the bottom. The direction of the friction vector always aligns with the velocity vector $\mathbf{\overline{u}}$. These models are used in the solvers:
* faParkerFukushima
* faTwoLayerAvalancheFoam
The friction model has to be set in the file `constant/transportProperties` (see below).
Friction models can be found in the folder `src/avalanche/friction`.
To implement a new friction model, copy an existing one, rename it and modify it.
Currently there are the following friction models available:
* laminar ([Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404) 3-Equations model)
* turbulent ([Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404) 4-Equations model)
#### laminarSuspension
`laminarSuspension`
[Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404).
This friction model can be used to get the 3-Equation model of Parker et al. (1986).
$|\boldsymbol{\tau}_{\mathrm{b}}| = c_{\mathrm{D}}\,|\mathbf{\overline{u}}|\,\mathbf{\overline{u}}$
```
suspensionFrictionModel laminarSuspension;
laminarSuspensionCoeffs
{
cd cd [0 0 0 0 0 0 0] 0.0006;
}
```
#### turbulentSuspension
`turbulentSuspension`
[Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404).
This friction model can be used to get the 4-Equation model of Parker et al. (1986). Note that this model is only compatible with faParkerFukushimaFoam.
**Note**: This model does not work with faTwoLayerAvalanceFoam due to the relative velocity (between dense flow and suspension layer) that is delivered to the friction model of the suspension layer.
$|\boldsymbol{\tau}_{\mathrm{b}}| = \alpha\,\overline{k}$
with the depth-averaged kinetic energy $\overline{k}$, calculated with the PDE
$\dfrac{\partial\,\overline{k}\,h}{\partial t} + \nabla\cdot\left(\overline{k}\,h\,\mathbf{\overline{u}}\right) = \boldsymbol{\tau}_{\mathrm{b}}\cdot\mathbf{\overline{u}}+\dfrac{1}{2}|\mathbf{\overline{u}}|^2\,S_e^{(w)}-\epsilon\,h-R\,g_{\mathrm{n}}\,v_{\mathrm{s}}\,\overline{c}\,h-\dfrac{1}{2}R\,g_{\mathrm{n}}\,h\left(S_e^{(s)}-S_d^{(s)}\right)$
with
$\epsilon = \beta\dfrac{\overline{k}^{3/2}}{h}$
$Ri = \dfrac{R\,g_{\mathrm{n}}\,\overline{c}\,h}{|\mathbf{\overline{u}}|^2}$
$\beta$ is an **optional parameter**. If not given, it will be calculated as
$\beta = \dfrac{2\,\dfrac{S_e^{(w)}}{\mathbf{\overline{u}}}\left(1-Ri-2\,\dfrac{c_{\mathrm{D}}}{\alpha}\right)+c_{\mathrm{D}}}{\left(\dfrac{c_{\mathrm{D}}}{\alpha}\right)^{3/2}}$
```
suspensionFrictionModel turbulentSuspension;
turbulentSuspensionCoeffs
{
cd cd [0 0 0 0 0 0 0] 0.01;
alpha alpha [0 0 0 0 0 0 0] 0.1;
beta beta [0 0 0 0 0 0 0] 0.7;
R R [ 0 0 0 0 0 0 0] 1.65;
Ds Ds [ 0 1 0 0 0 0 0] 0.00005;
kmin kmin [0 2 -2 0 0 0 0] 1e-7;
nu nu [0 2 -1 0 0 0 0] 1e-6;
}
```
## Entrainment models
### Dense flow entrainment models (entrainmentModel)
Entrainment describes the erosion of the intact snow cover and intake of the respective material $S_{\mathrm{e}}\,(\mathrm{m/s})$ into the avalanche. It is assumed that the snow cover has the same density as the avalanche.
The entrainment model has to be set in the file `constant/transportProperties` (see below). The entrainment model has to be set in the file `constant/transportProperties` (see below).
...@@ -271,17 +434,17 @@ Entrainment models can be found in the folder `src/avalanche/entrainment`. Curre ...@@ -271,17 +434,17 @@ Entrainment models can be found in the folder `src/avalanche/entrainment`. Curre
* Medina * Medina
* Ramms * Ramms
###### No entrainment #### No entrainment
`entrainmentOff` `entrainmentOff`
Choose to turn off entrainment ($S_e = 0$), no parameters. Choose to turn off entrainment ($S_{\mathrm{e}} = 0$), no parameters.
###### Front #### Front
`Front` `Front`
Simple front entrainment. Entrainment of the total mountain snow cover within a cell is triggered when $h > h_{trigger}$. Simple front entrainment. Entrainment of the total mountain snow cover within a cell is triggered when $h > h_{\mathrm{trigger}}$.
Parameters: Parameters:
``` ```
...@@ -292,7 +455,7 @@ FrontCoeffs ...@@ -292,7 +455,7 @@ FrontCoeffs
} }
``` ```
###### Erosionenergy #### Erosionenergy
`Erosionenergy` `Erosionenergy`
...@@ -300,7 +463,7 @@ Entrainment model following SamosAT, see e.g., [Rauter et al. (2016)](https://ww ...@@ -300,7 +463,7 @@ Entrainment model following SamosAT, see e.g., [Rauter et al. (2016)](https://ww
The entrainment rate $S_e$ is calculated as The entrainment rate $S_e$ is calculated as
$S_e = \dfrac{{\boldsymbol \tau}\cdot{\bf u}}{\rho\,e_b} $ $S_{\mathrm{e}} = \dfrac{{\boldsymbol \tau}\cdot{\bf u}}{\rho\,e_{\mathrm{b}}}$
Parameters: Parameters:
``` ```
...@@ -311,7 +474,7 @@ ErosionenergyCoeffs ...@@ -311,7 +474,7 @@ ErosionenergyCoeffs
} }
``` ```
###### Medina #### Medina
`Medina` `Medina`
...@@ -343,7 +506,7 @@ MedinaCoeffs ...@@ -343,7 +506,7 @@ MedinaCoeffs
} }
``` ```
###### Ramms #### Ramms
`Ramms` `Ramms`
...@@ -362,219 +525,239 @@ RammsCoeffs ...@@ -362,219 +525,239 @@ RammsCoeffs
} }
``` ```
#### Deposition models ### Suspension entrainment models (suspensionEntrainmentModel)
Deposition takes into account that mass is gradually lost in the avalanche during deceleration.
The deposition model has to be set in the file `constant/transportProperties` (see below). The entrainment model has to be set in the file `constant/transportProperties` (see below).
Deposition models can be found in the folder `src/avalanche/deposition` (because of the similarity to entrainment). Currently there is one deposition model available: Entrainment models can be found in the folder `src/avalanche/entrainment`. Currently there are the following available:
###### No deposition * ParkerFukushimaEntrainment
`depositionOff` #### ParkerFukushimaEntrainment
Choose to turn off deposition. `ParkerFukushimaEntrainment`
###### Stoppingprofile [Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404).
`Stoppingprofile` This model implements the standard entrainment model as used by Parker et al. (1986).
A deposition model derived from a decelerating velocity profile.
Rauter and Köhler (2019), "Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data", Geosciences, 2019 $S_e^{(s)} = v_{\mathrm{s}}\,\begin{cases}
0.3 &\text{for } Z > Z_{\mathrm{m}},\\[8pt]
3\cdot10^{-12}\,Z^{10}\left(1-\dfrac{Z_{\mathrm{c}}}{Z}\right)&\text{for } Z_{\mathrm{c}} < Z < Z_{\mathrm{m}},\\[8pt]
0 &\text{for } Z < Z_{\mathrm{c}},
\end{cases}$
Deposition model based on a decelerating Bagnold profile. with
$S_{d} = \dfrac{a}{|\overline{\mathbf{u}}|}\,\dfrac{\mathrm{d}\,(h|\overline{\mathbf{u}}|)}{\mathrm{d} t}$ $Z = \sqrt{R_{\mathrm{s}}}\,\mu$
with $R_{\mathrm{s}} = \dfrac{\sqrt{R\,g_{\mathrm{n}}\,d_{\mathrm{s}}^3}}{\nu}$
$ $\mu = \dfrac{\sqrt{|\boldsymbol{\tau}_{\mathrm{b}}|}}{v_{\mathrm{s}}}$
a = \left\{\begin{array}{clc}
\left(\dfrac{u_{dep}-|\mathbf{\overline{u}}|}{u_{dep}}\right)^{a_{dep}} & \text{for} & |\mathbf{\overline{u}}| \leq u_{dep} \ \land \ \dfrac{\mathrm{d}|\mathbf{\overline{u}}|}{\mathrm{d} t} < 0\\
0 & \text{else} &
\end{array}\right.$
and the parameter $u_{dep}$ and $a_{dep}$. $v_{\mathrm{s}} = \dfrac{R\,g_{\mathrm{n}}\,d_{\mathrm{s}}}{18\,\nu}$
Parameters:
``` ```
depositionModel Stoppingprofile; suspensionEntrainmentModel ParkerFukushimaEntrainment;
StoppingprofileCoeffs ParkerFukushimaEntrainmentCoeffs
{ {
ud ud [0 1 -1 0 0 0 0] 1.5; R R [ 0 0 0 0 0 0 0] 1.65;
ad ad [0 0 0 0 0 0 0] 1.0; Ds Ds [ 0 1 0 0 0 0 0] 0.00005;
Zc Zc [ 0 0 0 0 0 0 0] 0.5;
Zm Zm [ 0 0 0 0 0 0 0] 13.2;
nu nu [0 2 -1 0 0 0 0] 1e-6;
} }
``` ```
### faParkerFukushimaFoam ### Ambient fluid entrainment model (ambientEntrainmentModel)
This solver implements the Turbidity Current model of [Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404). The ambient fluid entrainment model controls the entrainment of ambient fluid (air for powder snow avalanches, water for turbidity currents) into the suspension flow. Ambient fluid entrainment models can be found in the folder `src/avalanche/entrainment`.
It can be found in `applications/solver/faParkerFukushimaFoam`. It can be called with `faParkerFukushimaFoam`.
$\dfrac{\partial\, h}{\partial t} + \nabla\cdot\left(h\,\mathbf{\overline{u}}\right) = e^{(w)}$ They have all in common that they depend on the Richardson Number:
$\dfrac{\partial\, h\,\mathbf{\overline{u}}}{\partial t} + \nabla_{\mathrm{s}}\cdot\left(h\,\mathbf{\overline{u}}\otimes\mathbf{\overline{u}}\right) = R\,\mathbf{g}_{\mathrm{s}}\,\overline{c}\,h-\dfrac{1}{2}\,R\,g_{\mathrm{n}}\,\nabla_{\mathrm{s}}\left(\overline{c}\,h^2\right)-\boldsymbol{\tau}_{\mathrm{b}}$
$\dfrac{\partial\, \overline{c}\,h}{\partial t} + \nabla\cdot\left(\overline{c}\,h\,\mathbf{\overline{u}}\right) = e^{(s)}-d^{(s)}$
with **unknown flow fields** $Ri = \dfrac{R\,g_n\,c\,h}{\mathbf{\overline{u}}^2}$
* depth-averaged flow velocity $\mathbf{\overline{u}}$,
* flow thickness $h$ and
* depth-averaged sediemnt concentration $\overline{c}$.
**Constant parameters** are The following models are available:
* the density ration between sediment and water $R$ and * ParkerFukushima
* the gravitational acceleration $\mathbf{g} = \mathbf{g}_{\mathrm{s}}+\mathbf{g}_{\mathrm{n}}$. * Ancey
* Turner
**Non-user-selectedable models** are used for #### ParkerFukushima
* the water entrainment rate $e^{(w)}$:
$e^{(w)} = \dfrac{0.00153}{0.0204+Ri}|\mathbf{\overline{u}}|$
with
$Ri = \dfrac{R\,g_{\mathrm{n}}\,\overline{c}\,h}{|\mathbf{\overline{u}}|^2}$
* the sediment deposition rate $d^{(s)}$:
$d^{(s)} = v_{\mathrm{s}}\,r_0\,\overline{c}$
with
$r_0 = 1+31.5\,\mu^{-1.46},$
$\mu = \dfrac{\sqrt{|\boldsymbol{\tau}_{\mathrm{b}}|}}{v_{\mathrm{s}}}$
$v_{\mathrm{s}} = \dfrac{R\,g_{\mathrm{n}}\,d_{\mathrm{s}}}{18\,\nu}$
**User-selectable models** (see below) have to be provided for This is the standard model from [Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404).
* the basal friction $\boldsymbol{\tau}_{\mathrm{b}}$ and
* the volumetric sediment entrainment rate $e^{(s)}$
**Initial conditions and boundary conditions** have to be provided for $S^{(w)} = \dfrac{e^{wf}}{Ri_0+Ri}|\mathbf{\overline{u}}|$
* the flow thickness $h$,
* the depth-integrated flow velocty $\mathbf{\overline{u}}$ and
* the depth-integrated sediment concentration $\overline{c}$
* the entrainable sediment thickness $h_{\mathrm{entrain}}$
#### Friction models (suspensionFrictionModels) Parameters:
```
ambientEntrainmentModel ParkerFukushimaEntrainment;
ParkerFukushimaEntrainmentCoeffs
{
ewf ewf [ 0 0 0 0 0 0 0] 0.00153;
The friction model describes the friction $\boldsymbol{\tau}_{\mathrm{b}}$ between flowing mass (turbidity current) and the bottom. The direction of the friction vector always aligns with the velocity vector $\mathbf{\overline{u}}$. Ri0 Ri0 [ 0 0 0 0 0 0 0] 0.0204;
}
```
The friction model has to be set in the file `constant/transportProperties` (see below). #### Ancey
Friction models can be found in the folder `src/avalanche/friction`.
To implement a new friction model, copy an existing one, rename it and modify it.
Currently there are the following friction models available: $S^{(w)} = |\mathbf{\overline{u}}| \,\alpha_2
* laminar (Parker et al., 1986: 3-Equations model) \begin{cases}
* turbulent (Parker et al., 1986: 4-Equations model) \exp\left(-\alpha_1\,Ri^2\right) &\text{for } Ri < 1,\\
\exp\left(-\alpha_1\right)/Ri & \text{for } Ri \geq 1.
\end{cases}$
###### laminarSuspension ```
ambientEntrainmentModel AnceyEntrainment;
AnceyEntrainmentCoeffs
{
alpha1 alpha1 [ 0 0 0 0 0 0 0] 1.6;
`laminarSuspension` alpha2 alpha2 [ 0 0 0 0 0 0 0] 0.05;
}
```
[Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404).
This friction model can be used to get the 3-Equation model of Parker et al. (1987). #### Turner
$|\boldsymbol{\tau}_{\mathrm{b}}| = c_{\mathrm{D}}\,|\mathbf{\overline{u}}|\,\mathbf{\overline{u}}$ $S^{(w)} = |\mathbf{\overline{u}}|
\begin{cases}
\dfrac{Ri_0-\,Ri}{\alpha_1+\alpha_2\,Ri} &\text{for } Ri < Ri_0,\\
0 & \text{for } Ri \geq Ri_0.
\end{cases}$
Parameters:
``` ```
suspensionFrictionModel laminarSuspension; ambientEntrainmentModel AnceyEntrainment;
laminarSuspensionCoeffs AnceyEntrainmentCoeffs
{ {
cd cd [0 0 0 0 0 0 0] 0.0006; alpha1 alpha1 [ 0 0 0 0 0 0 0] 10;
alpha2 alpha2 [ 0 0 0 0 0 0 0] 50;
Ri0 Ri0 [ 0 0 0 0 0 0 0] 0.8;
} }
``` ```
###### turbulentSuspension ## Deposition models
`turbulentSuspension` ### Dense flow deposition models (depositionModel)
[Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404). Deposition takes into account that mass is gradually lost in the avalanche during deceleration. The deposition model has to be set in the file `constant/transportProperties` (see below).
This friction model can be used to get the 4-Equation model of Parker et al. (1987). Deposition models can be found in the folder `src/avalanche/deposition`. The following models are available:
* depositionOff
* StoppingProfile
$|\boldsymbol{\tau}_{\mathrm{b}}| = \alpha\,\overline{k}$ #### No deposition
with the depth-averaged kinetic energy $\overline{k}$, calculated with the PDE `depositionOff`
$\dfrac{\partial\,\overline{k}\,h}{\partial t} + \nabla\cdot\left(\overline{k}\,h\,\mathbf{\overline{u}}\right) = \boldsymbol{\tau}_{\mathrm{b}}\cdot\mathbf{\overline{u}}+\dfrac{1}{2}|\mathbf{\overline{u}}|^2\,e^{(w)}-\epsilon\,h-R\,g_{\mathrm{n}}\,v_{\mathrm{s}}\,\overline{c}\,h-\dfrac{1}{2}R\,g_{\mathrm{n}}\,h\left(e^{(s)}-d^{(s)}\right)$
with
$\epsilon = \beta\dfrac{\overline{k}^{3/2}}{h}$ Choose to turn off deposition.
$Ri = \dfrac{R\,g_{\mathrm{n}}\,\overline{c}\,h}{|\mathbf{\overline{u}}|^2}$ #### Stoppingprofile
$\beta$ is an **optional parameter**. If not given, it will be calculated as `Stoppingprofile`
A deposition model derived from a decelerating velocity profile.
$\beta = \dfrac{2\,\dfrac{e^{(w)}}{\mathbf{\overline{u}}}\left(1-Ri-2\,\dfrac{c_{\mathrm{D}}}{\alpha}\right)+c_{\mathrm{D}}}{\left(\dfrac{c_{\mathrm{D}}}{\alpha}\right)^{3/2}}$ Rauter and Köhler (2019), "Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data", Geosciences, 2019
Deposition model based on a decelerating Bagnold profile.
``` $S_{d} = \dfrac{a}{|\overline{\mathbf{u}}|}\,\dfrac{\mathrm{d}\,(h|\overline{\mathbf{u}}|)}{\mathrm{d} t}$
suspensionFrictionModel turbulentSuspension;
turbulentSuspensionCoeffs
{
cd cd [0 0 0 0 0 0 0] 0.01;
alpha alpha [0 0 0 0 0 0 0] 0.1; with
beta beta [0 0 0 0 0 0 0] 0.7; $a = \left\{\begin{array}{clc}
\left(\dfrac{u_{dep}-|\mathbf{\overline{u}}|}{u_{dep}}\right)^{a_{dep}} & \text{for} & |\mathbf{\overline{u}}| \leq u_{dep} \ \land \ \dfrac{\mathrm{d}|\mathbf{\overline{u}}|}{\mathrm{d} t} < 0\\
0 & \text{else} &
\end{array}\right.$
R R [ 0 0 0 0 0 0 0] 1.65; and the parameter $u_{dep}$ and $a_{dep}$.
Ds Ds [ 0 1 0 0 0 0 0] 0.00005;
kmin kmin [0 2 -2 0 0 0 0] 1e-7; Parameters:
```
depositionModel Stoppingprofile;
StoppingprofileCoeffs
{
ud ud [0 1 -1 0 0 0 0] 1.5;
nu nu [0 2 -1 0 0 0 0] 1e-6; ad ad [0 0 0 0 0 0 0] 1.0;
} }
``` ```
#### Entrainment models
### Suspension deposition models (suspensionDepositionModel)
The entrainment model has to be set in the file `constant/transportProperties` (see below). The supsension deposition model controls the settling of particles from the suspension. The suspension deposition model has to be set in the file `constant/transportProperties` (see below).
Entrainment models can be found in the folder `src/avalanche/entrainment`. Currently there are the following available: Suspension deposition models can be found in the folder `src/avalanche/deposition`. The following models are available:
* ParkerFukushimaEntrainment * ParkerFukushima
###### ParkerFukushimaEntrainment #### ParkerFukushima
`ParkerFukushimaEntrainment` This is the standard deposition model from [Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404). It is based on the settling velocity of grains in fluid.
[Parker et al. (1986)](https://doi.org/10.1017/S0022112086001404). $S_d^{(s)} = v_{\mathrm{s}}\,r_0\,\overline{c}$
with
$r_0 = 1+31.5\,\mu^{-1.46},$
$\mu = \dfrac{\sqrt{|\boldsymbol{\tau}_{\mathrm{b}}|}}{v_{\mathrm{s}}}$
$v_{\mathrm{s}} = \dfrac{R\,g_{\mathrm{n}}\,d_{\mathrm{s}}}{18\,\nu}$
This model implements the standard entrainment model as used by Parker et al. (1986). Parameters:
```
suspensionDepositionModel ParkerFukushimaDeposition;
$e^{(s)} = v_{\mathrm{s}}\,\begin{cases} ParkerFukushimaDepositionCoeffs
0.3 &\text{for } Z > Z_{\r{m}},\\[8pt] {
3\cdot10^{-12}\,Z^{10}\left(1-\dfrac{Z_{\mathrm{c}}}{Z}\right)&\text{for } Z_{\mathrm{c}} < Z < Z_{\mathrm{m}},\\[8pt] nu nu [0 2 -1 0 0 0 0] 1e-6;
0 &\text{for } Z < Z_{\mathrm{c}},
\end{cases}$
with Ds Ds [ 0 1 0 0 0 0 0] 0.00005;
}
```
$Z = \sqrt{R_{\mathrm{s}}}\,\mu$ ## Coupling models (couplingModel)
$R_{\mathrm{s}} = \dfrac{\sqrt{R\,g_{\mathrm{n}}\,d_{\mathrm{s}}^3}}{\nu}$ These models describe the sediment flux from the dense core to the powder cloud $S_f$. These models are required in
* faTwoLayerAvalancheFoam
$\mu = \dfrac{\sqrt{|\boldsymbol{\tau}_{\mathrm{b}}|}}{v_{\mathrm{s}}}$ ### Inertial (couplingInertial)
$v_{\mathrm{s}} = \dfrac{R\,g_{\mathrm{n}}\,d_{\mathrm{s}}}{18\,\nu}$ This model represents on the simplest methods to couple the dense core with the powder cloud. The flux depends solely on flow parameters of the dense flow.
$S_f = \max\left(I_1-I_0,0\right)\,s_f$
with
$I_1 = \dfrac{\dot{\gamma_1}\,d_1}{\sqrt{p_1/\rho_s}}$
$\dot{\gamma_1} = \dfrac{5}{2}\,\dfrac{|{\bf u_1}|}{h_1}$
Parameters:
``` ```
suspensionEntrainmentModel ParkerFukushimaEntrainment; couplingModel couplingInertial;
ParkerFukushimaEntrainmentCoeffs
{
R R [ 0 0 0 0 0 0 0] 1.65;
Ds Ds [ 0 1 0 0 0 0 0] 0.00005; couplingInertialCoeffs
{
I0 I0 [ 0 0 0 0 0 0 0] 0.5;
Zc Zc [ 0 0 0 0 0 0 0] 0.5; u0 u0 [ 0 0 0 0 0 0 0] 1e-5;
Zm Zm [ 0 0 0 0 0 0 0] 13.2; d d [ 0 1 0 0 0 0 0] 0.01;
nu nu [0 2 -1 0 0 0 0] 1e-6; rhos rhos [ 1 -3 0 0 0 0 0] 800;
} }
``` ```
Example: wolfsgrube_mixed
## functionObjects ## functionObjects
Various functionObjects are available and can be added to the execution of a solver to extend its capabilities. They are added in the subDict `functions` in `system/controlDict`: Various functionObjects are available and can be added to the execution of a solver to extend its capabilities. They are added in the subDict `functions` in `system/controlDict`:
...@@ -645,7 +828,7 @@ Parameters: ...@@ -645,7 +828,7 @@ Parameters:
* `ymin`: extend in y-direction (optional) * `ymin`: extend in y-direction (optional)
* `ymax`: extend in y-direction (optional) * `ymax`: extend in y-direction (optional)
* `postfix`: The postfix of the files. * `postfix`: The postfix of the files.
* `offset`: Mapping back to world coordinates from simulation coordinates (see gridToSTL/releaseAreaMapping) * `offset`: Mapping back to world coordinates from simulation coordinates (see gridToSTL/releaseAreaMapping). Note that grid2Stl can write a file with the correct offset, that can be included into the file with `"#include "../constant/offset";`
``` ```
...@@ -670,8 +853,36 @@ gridfileWrite ...@@ -670,8 +853,36 @@ gridfileWrite
postfix ".asc"; postfix ".asc";
offset (5000.0 -220000.0 0); offset (5000.0 -220000.0 0); //or #include "../constant/offset";
}
```
### isoLine
The isoSurface functioObject allows a direct export of isolines to GIS.
Parameters:
* `field`: The name of the field to be processed and exported.
* `fileName`: The filename where the isoline will be saved as a shapefile (*.shp)
* `values` : List of values for isolines
* `offset`: Mapping back to world coordinates from simulation coordinates (see gridToSTL/releaseAreaMapping). Note that grid2Stl can write a file with the correct offset, that can be included into the file with `"#include "../constant/offset";`
```
h1iso
{
type isoLine;
libs (faAvalanche);
field h;
fileName "h";
values (0.5 2 4 6 8 10 12 14 16);
offset (5000.0 -220000.0 0); //or #include "../constant/offset";
} }
// ************************************************************************* //
``` ```
### autoAreaToVolumeMapping ### autoAreaToVolumeMapping
...@@ -761,6 +972,8 @@ divisions 300; //number of points a polygon side is di ...@@ -761,6 +972,8 @@ divisions 300; //number of points a polygon side is di
domainHeight 500.0; //height of the volume mesh domainHeight 500.0; //height of the volume mesh
offset (5000.0 -220000.0 0); //offset the final mesh by this value offset (5000.0 -220000.0 0); //offset the final mesh by this value
autoOffset on; //automatically calculate a good offset value. Overwrites offset.
``` ```
...@@ -777,7 +990,7 @@ Three following forms of release areas can be created: ...@@ -777,7 +990,7 @@ Three following forms of release areas can be created:
* Polygon * Polygon
* Shapefile * Shapefile
##### Sphere #### Sphere
`sphere` `sphere`
...@@ -804,7 +1017,7 @@ fields ...@@ -804,7 +1017,7 @@ fields
} }
``` ```
##### Polygon #### Polygon
`polygon` `polygon`
...@@ -861,7 +1074,7 @@ fields ...@@ -861,7 +1074,7 @@ fields
} }
``` ```
##### Shapefile #### Shapefile
`shapefile` `shapefile`
...@@ -912,9 +1125,9 @@ fields ...@@ -912,9 +1125,9 @@ fields
} }
``` ```
##### Rasterfile #### Rasterfile
`shapefile` `rasterfile`
**Import of rasterfiles**. **Import of rasterfiles**.
...@@ -1018,11 +1231,22 @@ See `system/faSchemes` and the [OpenFOAM User Manual](https://cfd.direct/openfoa ...@@ -1018,11 +1231,22 @@ See `system/faSchemes` and the [OpenFOAM User Manual](https://cfd.direct/openfoa
See `system/faSolution` and the [OpenFOAM User Manual](https://cfd.direct/openfoam/user-guide/fvSolution/). Note that this solver is based on the Finite Area Method. Therefore, the numerical solution algorithms are found in the file **fa**Solution (instead of **fv**Solution). See `system/faSolution` and the [OpenFOAM User Manual](https://cfd.direct/openfoam/user-guide/fvSolution/). Note that this solver is based on the Finite Area Method. Therefore, the numerical solution algorithms are found in the file **fa**Solution (instead of **fv**Solution).
## Post Processing
Sometimes it is required to rerun functionObjects, either after a distributed (parallel) case was reconstructed or simply because you forgot to add the functionObject. For this usecase **all** solvers have a `-postProcess` flag. With this flag, only the postProcessing steps of the functionObjects will be executed. The source for the postProcessing is read from existing files from the file system.
Example:
```
cd avalanche/tutorials/simpleslope // change into the directory
./Allrun // run the case
faSavageHutterFoam -postProcess // execute functionObjects again
```
## Tutorials ## Tutorials
All tutorials contain a `Allrun` script which will conduct all steps required to run a simulation. All tutorials contain a `Allrun` script which will conduct all steps required to run a simulation.
### simpleslope ### simpleslope
Demonstrates: Demonstrates:
...@@ -1035,6 +1259,9 @@ Example from [Rauter and Tukovic (2018)](https://arxiv.org/abs/1802.05229), sect ...@@ -1035,6 +1259,9 @@ Example from [Rauter and Tukovic (2018)](https://arxiv.org/abs/1802.05229), sect
Demonstrates: Demonstrates:
* faSavageHutterFoam * faSavageHutterFoam
* natural terrain * natural terrain
* shapefile export
* gridfile export
* isoline export
Example from [Rauter et al. (2018)](https://doi.org/10.5194/gmd-11-2923-2018). Example from [Rauter et al. (2018)](https://doi.org/10.5194/gmd-11-2923-2018).
...@@ -1049,3 +1276,10 @@ Demonstrates: ...@@ -1049,3 +1276,10 @@ Demonstrates:
* natural terrain * natural terrain
Simplified example similar to [Rauter et al. (2019)](https://www.esi-group.com/sites/default/files/resource/other/8230/rauter_studentabstract_openfoam_2019.pdf) of a turbdity current in Monterey Canyon. Simplified example similar to [Rauter et al. (2019)](https://www.esi-group.com/sites/default/files/resource/other/8230/rauter_studentabstract_openfoam_2019.pdf) of a turbdity current in Monterey Canyon.
### wolfsgrube_mixed
Demonstrated:
* faTwoLayerAvalancheFoam
The same as the wolfsgruben tutorial, however, set up for faTwoLayerAvalancheFoam, simulating a mixed snow avalanche (dense flow + powder cloud).
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment