Skip to content
Snippets Groups Projects
checkGeometry.C 24.2 KiB
Newer Older
Henry's avatar
Henry committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
#include "checkGeometry.H"
#include "polyMesh.H"
#include "cellSet.H"
#include "faceSet.H"
#include "pointSet.H"
#include "EdgeMap.H"
#include "wedgePolyPatch.H"
#include "unitConversion.H"
#include "polyMeshTetDecomposition.H"


// Find wedge with opposite orientation. Note: does not actually check that
// it is opposite, only that it has opposite normal and same axis
Foam::label Foam::findOppositeWedge
(
    const polyMesh& mesh,
    const wedgePolyPatch& wpp
)
{
    const polyBoundaryMesh& patches = mesh.boundaryMesh();

    scalar wppCosAngle = wpp.cosAngle();

    forAll(patches, patchI)
    {
        if
        (
            patchI != wpp.index()
         && patches[patchI].size()
         && isA<wedgePolyPatch>(patches[patchI])
        )
        {
            const wedgePolyPatch& pp =
                refCast<const wedgePolyPatch>(patches[patchI]);

            // Calculate (cos of) angle to wpp (not pp!) centre normal
            scalar ppCosAngle = wpp.centreNormal() & pp.n();

            if
            (
                pp.size() == wpp.size()
             && mag(pp.axis() & wpp.axis()) >= (1-1e-3)
             && mag(ppCosAngle - wppCosAngle) >= 1e-3
            )
            {
                return patchI;
            }
        }
    }
    return -1;
}


bool Foam::checkWedges
(
    const polyMesh& mesh,
    const bool report,
    const Vector<label>& directions,
    labelHashSet* setPtr
)
{
    // To mark edges without calculating edge addressing
    EdgeMap<label> edgesInError;

    const pointField& p = mesh.points();
    const faceList& fcs = mesh.faces();


    const polyBoundaryMesh& patches = mesh.boundaryMesh();
    forAll(patches, patchI)
    {
        if (patches[patchI].size() && isA<wedgePolyPatch>(patches[patchI]))
        {
            const wedgePolyPatch& pp =
                refCast<const wedgePolyPatch>(patches[patchI]);

            scalar wedgeAngle = acos(pp.cosAngle());

            if (report)
            {
                Info<< "    Wedge " << pp.name() << " with angle "
                    << radToDeg(wedgeAngle) << " degrees"
                    << endl;
            }

            // Find opposite
            label oppositePatchI = findOppositeWedge(mesh, pp);

            if (oppositePatchI == -1)
            {
                if (report)
                {
                    Info<< " ***Cannot find opposite wedge for wedge "
                        << pp.name() << endl;
                }
                return true;
            }

            const wedgePolyPatch& opp =
                refCast<const wedgePolyPatch>(patches[oppositePatchI]);


            if (mag(opp.axis() & pp.axis()) < (1-1e-3))
            {
                if (report)
                {
                    Info<< " ***Wedges do not have the same axis."
                        << " Encountered " << pp.axis()
                        << " on patch " << pp.name()
                        << " which differs from " << opp.axis()
                        << " on opposite wedge patch" << opp.axis()
                        << endl;
                }
                return true;
            }



            // Mark edges on wedgePatches
            forAll(pp, i)
            {
                const face& f = pp[i];
                forAll(f, fp)
                {
                    label p0 = f[fp];
                    label p1 = f.nextLabel(fp);
                    edgesInError.insert(edge(p0, p1), -1);  // non-error value
                }
            }


            // Check that wedge patch is flat
            const point& p0 = p[pp.meshPoints()[0]];
            forAll(pp.meshPoints(), i)
            {
                const point& pt = p[pp.meshPoints()[i]];
                scalar d = mag((pt - p0) & pp.n());

                if (d > sqrt(SMALL))
                {
                    if (report)
                    {
                        Info<< " ***Wedge patch " << pp.name() << " not planar."
                            << " Point " << pt << " is not in patch plane by "
                            << d << " metre."
                            << endl;
                    }
                    return true;
                }
            }
        }
    }



    // Check all non-wedge faces
    label nEdgesInError = 0;

    forAll(fcs, faceI)
    {
        const face& f = fcs[faceI];

        forAll(f, fp)
        {
            label p0 = f[fp];
            label p1 = f.nextLabel(fp);
            if (p0 < p1)
            {
                vector d(p[p1]-p[p0]);
                scalar magD = mag(d);

                if (magD > ROOTVSMALL)
                {
                    d /= magD;

                    // Check how many empty directions are used by the edge.
                    label nEmptyDirs = 0;
                    label nNonEmptyDirs = 0;
                    for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
                    {
                        if (mag(d[cmpt]) > 1e-6)
                        {
                            if (directions[cmpt] == 0)
                            {
                                nEmptyDirs++;
                            }
                            else
                            {
                                nNonEmptyDirs++;
                            }
                        }
                    }

                    if (nEmptyDirs == 0)
                    {
                        // Purely in ok directions.
                    }
                    else if (nEmptyDirs == 1)
                    {
                        // Ok if purely in empty directions.
                        if (nNonEmptyDirs > 0)
                        {
                            if (edgesInError.insert(edge(p0, p1), faceI))
                            {
                                nEdgesInError++;
                            }
                        }
                    }
                    else if (nEmptyDirs > 1)
                    {
                        // Always an error
                        if (edgesInError.insert(edge(p0, p1), faceI))
                        {
                            nEdgesInError++;
                        }
                    }
                }
            }
        }
    }

    label nErrorEdges = returnReduce(nEdgesInError, sumOp<label>());

    if (nErrorEdges > 0)
    {
        if (report)
        {
            Info<< " ***Number of edges not aligned with or perpendicular to "
                << "non-empty directions: " << nErrorEdges << endl;
        }

        if (setPtr)
        {
            setPtr->resize(2*nEdgesInError);
            forAllConstIter(EdgeMap<label>, edgesInError, iter)
            {
                if (iter() >= 0)
                {
                    setPtr->insert(iter.key()[0]);
                    setPtr->insert(iter.key()[1]);
                }
            }
        }

        return true;
    }
    else
    {
        if (report)
        {
            Info<< "    All edges aligned with or perpendicular to "
                << "non-empty directions." << endl;
        }
        return false;
    }
}


namespace Foam
{
    //- Default transformation behaviour for position
    class transformPositionList
    {
    public:

        //- Transform patch-based field
        void operator()
        (
            const coupledPolyPatch& cpp,
            List<pointField>& pts
        ) const
        {
            // Each element of pts is all the points in the face. Convert into
            // lists of size cpp to transform.

            List<pointField> newPts(pts.size());
            forAll(pts, faceI)
            {
                newPts[faceI].setSize(pts[faceI].size());
            }

            label index = 0;
            while (true)
            {
                label n = 0;

                // Extract for every face the i'th position
                pointField ptsAtIndex(pts.size(), vector::zero);
                forAll(cpp, faceI)
                {
                    const pointField& facePts = pts[faceI];
                    if (facePts.size() > index)
                    {
                        ptsAtIndex[faceI] = facePts[index];
                        n++;
                    }
                }

                if (n == 0)
                {
                    break;
                }

                // Now ptsAtIndex will have for every face either zero or
                // the position of the i'th vertex. Transform.
                cpp.transformPosition(ptsAtIndex);

                // Extract back from ptsAtIndex into newPts
                forAll(cpp, faceI)
                {
                    pointField& facePts = newPts[faceI];
                    if (facePts.size() > index)
                    {
                        facePts[index] = ptsAtIndex[faceI];
                    }
                }

                index++;
            }

            pts.transfer(newPts);
        }
    };
}


bool Foam::checkCoupledPoints
(
    const polyMesh& mesh,
    const bool report,
    labelHashSet* setPtr
)
{
    const pointField& p = mesh.points();
    const faceList& fcs = mesh.faces();
    const polyBoundaryMesh& patches = mesh.boundaryMesh();

    // Zero'th point on coupled faces
    //pointField nbrZeroPoint(fcs.size()-mesh.nInternalFaces(), vector::max);
    List<pointField> nbrPoints(fcs.size() - mesh.nInternalFaces());

    // Exchange zero point
    forAll(patches, patchI)
    {
        if (patches[patchI].coupled())
        {
            const coupledPolyPatch& cpp = refCast<const coupledPolyPatch>
            (
                patches[patchI]
            );

            forAll(cpp, i)
            {
                label bFaceI = cpp.start() + i - mesh.nInternalFaces();
                const face& f = cpp[i];
                nbrPoints[bFaceI].setSize(f.size());
                forAll(f, fp)
                {
                    const point& p0 = p[f[fp]];
                    nbrPoints[bFaceI][fp] = p0;
                }
            }
        }
    }
    syncTools::syncBoundaryFaceList
    (
        mesh,
        nbrPoints,
        eqOp<pointField>(),
        transformPositionList()
    );

    // Compare to local ones. Use same tolerance as for matching
    label nErrorFaces = 0;
    scalar avgMismatch = 0;
    label nCoupledPoints = 0;

    forAll(patches, patchI)
    {
        if (patches[patchI].coupled())
        {
            const coupledPolyPatch& cpp =
                refCast<const coupledPolyPatch>(patches[patchI]);

            if (cpp.owner())
            {
                scalarField smallDist
                (
                    cpp.calcFaceTol
                    (
                        //cpp.matchTolerance(),
                        cpp,
                        cpp.points(),
                        cpp.faceCentres()
                    )
                );

                forAll(cpp, i)
                {
                    label bFaceI = cpp.start() + i - mesh.nInternalFaces();
                    const face& f = cpp[i];

                    if (f.size() != nbrPoints[bFaceI].size())
                    {
                        FatalErrorIn
                        (
                            "Foam::checkCoupledPoints\n"
                            "(\n"
                            "   const polyMesh&, const bool, labelHashSet*\n"
                            ")\n"
                        )   << "Local face size : " << f.size()
                            << " does not equal neighbour face size : "
                            << nbrPoints[bFaceI].size()
                            << abort(FatalError);
                    }

                    label fp = 0;
                    forAll(f, j)
                    {
                        const point& p0 = p[f[fp]];
                        scalar d = mag(p0 - nbrPoints[bFaceI][j]);

                        if (d > smallDist[i])
                        {
                            if (setPtr)
                            {
                                setPtr->insert(cpp.start()+i);
                            }
                            nErrorFaces++;

                            break;
                        }

                        avgMismatch += d;
                        nCoupledPoints++;

                        fp = f.rcIndex(fp);
                    }
                }
            }
        }
    }

    reduce(nErrorFaces, sumOp<label>());
    reduce(avgMismatch, maxOp<scalar>());
    reduce(nCoupledPoints, sumOp<label>());

    if (nCoupledPoints > 0)
    {
        avgMismatch /= nCoupledPoints;
    }

    if (nErrorFaces > 0)
    {
        if (report)
        {
            Info<< "  **Error in coupled point location: "
                << nErrorFaces
                << " faces have their 0th or consecutive vertex not opposite"
                << " their coupled equivalent. Average mismatch "
                << avgMismatch << "."
                << endl;
        }

        return true;
    }
    else
    {
        if (report)
        {
            Info<< "    Coupled point location match (average "
                << avgMismatch << ") OK." << endl;
        }

        return false;
    }
}


Foam::label Foam::checkGeometry(const polyMesh& mesh, const bool allGeometry)
{
    label noFailedChecks = 0;

    Info<< "\nChecking geometry..." << endl;

    // Get a small relative length from the bounding box
    const boundBox& globalBb = mesh.bounds();

    Info<< "    Overall domain bounding box "
        << globalBb.min() << " " << globalBb.max() << endl;


    // Min length
    scalar minDistSqr = magSqr(1e-6 * globalBb.span());

    // Non-empty directions
    const Vector<label> validDirs = (mesh.geometricD() + Vector<label>::one)/2;
    Info<< "    Mesh (non-empty, non-wedge) directions " << validDirs << endl;

    const Vector<label> solDirs = (mesh.solutionD() + Vector<label>::one)/2;
    Info<< "    Mesh (non-empty) directions " << solDirs << endl;

    if (mesh.nGeometricD() < 3)
    {
        pointSet nonAlignedPoints(mesh, "nonAlignedEdges", mesh.nPoints()/100);

        if
        (
            (
                validDirs != solDirs
             && checkWedges(mesh, true, validDirs, &nonAlignedPoints)
            )
         || (
                validDirs == solDirs
             && mesh.checkEdgeAlignment(true, validDirs, &nonAlignedPoints)
            )
        )
        {
            noFailedChecks++;
            label nNonAligned = returnReduce
            (
                nonAlignedPoints.size(),
                sumOp<label>()
            );

            if (nNonAligned > 0)
            {
                Info<< "  <<Writing " << nNonAligned
                    << " points on non-aligned edges to set "
                    << nonAlignedPoints.name() << endl;
                nonAlignedPoints.instance() = mesh.pointsInstance();
                nonAlignedPoints.write();
            }
        }
    }

    if (mesh.checkClosedBoundary(true)) noFailedChecks++;

    {
        cellSet cells(mesh, "nonClosedCells", mesh.nCells()/100+1);
        cellSet aspectCells(mesh, "highAspectRatioCells", mesh.nCells()/100+1);
        if
        (
            mesh.checkClosedCells
            (
                true,
                &cells,
                &aspectCells,
                mesh.geometricD()
            )
        )
        {
            noFailedChecks++;

            label nNonClosed = returnReduce(cells.size(), sumOp<label>());

            if (nNonClosed > 0)
            {
                Info<< "  <<Writing " << nNonClosed
                    << " non closed cells to set " << cells.name() << endl;
                cells.instance() = mesh.pointsInstance();
                cells.write();
            }
        }

        label nHighAspect = returnReduce(aspectCells.size(), sumOp<label>());

        if (nHighAspect > 0)
        {
            Info<< "  <<Writing " << nHighAspect
                << " cells with high aspect ratio to set "
                << aspectCells.name() << endl;
            aspectCells.instance() = mesh.pointsInstance();
            aspectCells.write();
        }
    }

    {
        faceSet faces(mesh, "zeroAreaFaces", mesh.nFaces()/100+1);
        if (mesh.checkFaceAreas(true, &faces))
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " zero area faces to set " << faces.name() << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    {
        cellSet cells(mesh, "zeroVolumeCells", mesh.nCells()/100+1);
        if (mesh.checkCellVolumes(true, &cells))
        {
            noFailedChecks++;

            label nCells = returnReduce(cells.size(), sumOp<label>());

            if (nCells > 0)
            {
                Info<< "  <<Writing " << nCells
                    << " zero volume cells to set " << cells.name() << endl;
                cells.instance() = mesh.pointsInstance();
                cells.write();
            }
        }
    }

    {
        faceSet faces(mesh, "nonOrthoFaces", mesh.nFaces()/100+1);
        if (mesh.checkFaceOrthogonality(true, &faces))
        {
            noFailedChecks++;
        }

        label nFaces = returnReduce(faces.size(), sumOp<label>());

        if (nFaces > 0)
        {
            Info<< "  <<Writing " << nFaces
                << " non-orthogonal faces to set " << faces.name() << endl;
            faces.instance() = mesh.pointsInstance();
            faces.write();
        }
    }

    {
        faceSet faces(mesh, "wrongOrientedFaces", mesh.nFaces()/100 + 1);
        if (mesh.checkFacePyramids(true, -SMALL, &faces))
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " faces with incorrect orientation to set "
                    << faces.name() << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    {
        faceSet faces(mesh, "skewFaces", mesh.nFaces()/100+1);
        if (mesh.checkFaceSkewness(true, &faces))
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " skew faces to set " << faces.name() << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    {
        faceSet faces(mesh, "coupledFaces", mesh.nFaces()/100 + 1);
        if (checkCoupledPoints(mesh, true, &faces))
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " faces with incorrectly matched 0th (or consecutive)"
                    << " vertex to set "
                    << faces.name() << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    if (allGeometry)
    {
        faceSet faces(mesh, "lowQualityTetFaces", mesh.nFaces()/100+1);
        if
        (
            polyMeshTetDecomposition::checkFaceTets
            (
                mesh,
                polyMeshTetDecomposition::minTetQuality,
                true,
                &faces
            )
        )
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " faces with low quality or negative volume "
                    << "decomposition tets to set " << faces.name() << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    if (allGeometry)
    {
        // Note use of nPoints since don't want edge construction.
        pointSet points(mesh, "shortEdges", mesh.nPoints()/1000 + 1);
        if (mesh.checkEdgeLength(true, minDistSqr, &points))
        {
            //noFailedChecks++;

            label nPoints = returnReduce(points.size(), sumOp<label>());

            if (nPoints > 0)
            {
                Info<< "  <<Writing " << nPoints
                    << " points on short edges to set " << points.name()
                    << endl;
                points.instance() = mesh.pointsInstance();
                points.write();
            }
        }

        label nEdgeClose = returnReduce(points.size(), sumOp<label>());

        if (mesh.checkPointNearness(false, minDistSqr, &points))
        {
            //noFailedChecks++;

            label nPoints = returnReduce(points.size(), sumOp<label>());

            if (nPoints > nEdgeClose)
            {
                pointSet nearPoints(mesh, "nearPoints", points);
                Info<< "  <<Writing " << nPoints
                    << " near (closer than " << Foam::sqrt(minDistSqr)
                    << " apart) points to set " << nearPoints.name() << endl;
                nearPoints.instance() = mesh.pointsInstance();
                nearPoints.write();
            }
        }
    }

    if (allGeometry)
    {
        faceSet faces(mesh, "concaveFaces", mesh.nFaces()/100 + 1);
        if (mesh.checkFaceAngles(true, 10, &faces))
        {
            //noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " faces with concave angles to set " << faces.name()
                    << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    if (allGeometry)
    {
        faceSet faces(mesh, "warpedFaces", mesh.nFaces()/100 + 1);
        if (mesh.checkFaceFlatness(true, 0.8, &faces))
        {
            //noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            if (nFaces > 0)
            {
                Info<< "  <<Writing " << nFaces
                    << " warped faces to set " << faces.name() << endl;
                faces.instance() = mesh.pointsInstance();
                faces.write();
            }
        }
    }

    if (allGeometry)
    {
        cellSet cells(mesh, "underdeterminedCells", mesh.nCells()/100);
        if (mesh.checkCellDeterminant(true, &cells))
        {
            noFailedChecks++;

            label nCells = returnReduce(cells.size(), sumOp<label>());

            Info<< "  <<Writing " << nCells
                << " under-determined cells to set " << cells.name() << endl;
            cells.instance() = mesh.pointsInstance();
            cells.write();
        }
    }

    if (allGeometry)
    {
        cellSet cells(mesh, "concaveCells", mesh.nCells()/100);
        if (mesh.checkConcaveCells(true, &cells))
        {
            noFailedChecks++;

            label nCells = returnReduce(cells.size(), sumOp<label>());

            Info<< "  <<Writing " << nCells
                << " concave cells to set " << cells.name() << endl;
            cells.instance() = mesh.pointsInstance();
            cells.write();
        }
    }

    if (allGeometry)
    {
        faceSet faces(mesh, "lowWeightFaces", mesh.nFaces()/100);
        if (mesh.checkFaceWeight(true, 0.05, &faces))
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            Info<< "  <<Writing " << nFaces
                << " faces with low interpolation weights to set "
                << faces.name() << endl;
            faces.instance() = mesh.pointsInstance();
            faces.write();
        }
    }

    if (allGeometry)
    {
        faceSet faces(mesh, "lowVolRatioFaces", mesh.nFaces()/100);
        if (mesh.checkVolRatio(true, 0.01, &faces))
        {
            noFailedChecks++;

            label nFaces = returnReduce(faces.size(), sumOp<label>());

            Info<< "  <<Writing " << nFaces
                << " faces with low volume ratio cells to set "
                << faces.name() << endl;
            faces.instance() = mesh.pointsInstance();
            faces.write();
        }
    }

    return noFailedChecks;
}