Newer
Older
#include "checkGeometry.H"
#include "polyMesh.H"
#include "cellSet.H"
#include "faceSet.H"
#include "pointSet.H"
#include "EdgeMap.H"
#include "wedgePolyPatch.H"
#include "unitConversion.H"
#include "polyMeshTetDecomposition.H"
// Find wedge with opposite orientation. Note: does not actually check that
// it is opposite, only that it has opposite normal and same axis
Foam::label Foam::findOppositeWedge
(
const polyMesh& mesh,
const wedgePolyPatch& wpp
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
scalar wppCosAngle = wpp.cosAngle();
patchi != wpp.index()
&& patches[patchi].size()
&& isA<wedgePolyPatch>(patches[patchi])
refCast<const wedgePolyPatch>(patches[patchi]);
// Calculate (cos of) angle to wpp (not pp!) centre normal
scalar ppCosAngle = wpp.centreNormal() & pp.n();
if
(
pp.size() == wpp.size()
&& mag(pp.axis() & wpp.axis()) >= (1-1e-3)
&& mag(ppCosAngle - wppCosAngle) >= 1e-3
)
{
}
}
}
return -1;
}
bool Foam::checkWedges
(
const polyMesh& mesh,
const bool report,
const Vector<label>& directions,
labelHashSet* setPtr
)
{
// To mark edges without calculating edge addressing
EdgeMap<label> edgesInError;
const pointField& p = mesh.points();
const faceList& fcs = mesh.faces();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
if (patches[patchi].size() && isA<wedgePolyPatch>(patches[patchi]))
refCast<const wedgePolyPatch>(patches[patchi]);
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
scalar wedgeAngle = acos(pp.cosAngle());
if (report)
{
Info<< " Wedge " << pp.name() << " with angle "
<< radToDeg(wedgeAngle) << " degrees"
<< endl;
}
// Find opposite
label oppositePatchI = findOppositeWedge(mesh, pp);
if (oppositePatchI == -1)
{
if (report)
{
Info<< " ***Cannot find opposite wedge for wedge "
<< pp.name() << endl;
}
return true;
}
const wedgePolyPatch& opp =
refCast<const wedgePolyPatch>(patches[oppositePatchI]);
if (mag(opp.axis() & pp.axis()) < (1-1e-3))
{
if (report)
{
Info<< " ***Wedges do not have the same axis."
<< " Encountered " << pp.axis()
<< " on patch " << pp.name()
<< " which differs from " << opp.axis()
<< " on opposite wedge patch" << opp.axis()
<< endl;
}
return true;
}
// Mark edges on wedgePatches
forAll(pp, i)
{
const face& f = pp[i];
forAll(f, fp)
{
label p0 = f[fp];
label p1 = f.nextLabel(fp);
edgesInError.insert(edge(p0, p1), -1); // non-error value
}
}
// Check that wedge patch is flat
const point& p0 = p[pp.meshPoints()[0]];
forAll(pp.meshPoints(), i)
{
const point& pt = p[pp.meshPoints()[i]];
scalar d = mag((pt - p0) & pp.n());
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
{
if (report)
{
Info<< " ***Wedge patch " << pp.name() << " not planar."
<< " Point " << pt << " is not in patch plane by "
<< d << " metre."
<< endl;
}
return true;
}
}
}
}
// Check all non-wedge faces
label nEdgesInError = 0;
forAll(fcs, faceI)
{
const face& f = fcs[faceI];
forAll(f, fp)
{
label p0 = f[fp];
label p1 = f.nextLabel(fp);
if (p0 < p1)
{
vector d(p[p1]-p[p0]);
scalar magD = mag(d);
if (magD > ROOTVSMALL)
{
d /= magD;
// Check how many empty directions are used by the edge.
label nEmptyDirs = 0;
label nNonEmptyDirs = 0;
for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
{
if (mag(d[cmpt]) > 1e-6)
{
if (directions[cmpt] == 0)
{
nEmptyDirs++;
}
else
{
nNonEmptyDirs++;
}
}
}
if (nEmptyDirs == 0)
{
// Purely in ok directions.
}
else if (nEmptyDirs == 1)
{
// Ok if purely in empty directions.
if (nNonEmptyDirs > 0)
{
if (edgesInError.insert(edge(p0, p1), faceI))
{
nEdgesInError++;
}
}
}
else if (nEmptyDirs > 1)
{
// Always an error
if (edgesInError.insert(edge(p0, p1), faceI))
{
nEdgesInError++;
}
}
}
}
}
}
label nErrorEdges = returnReduce(nEdgesInError, sumOp<label>());
if (nErrorEdges > 0)
{
if (report)
{
Info<< " ***Number of edges not aligned with or perpendicular to "
<< "non-empty directions: " << nErrorEdges << endl;
}
if (setPtr)
{
setPtr->resize(2*nEdgesInError);
forAllConstIter(EdgeMap<label>, edgesInError, iter)
{
if (iter() >= 0)
{
setPtr->insert(iter.key()[0]);
setPtr->insert(iter.key()[1]);
}
}
}
return true;
}
else
{
if (report)
{
Info<< " All edges aligned with or perpendicular to "
<< "non-empty directions." << endl;
}
return false;
}
}
namespace Foam
{
//- Default transformation behaviour for position
class transformPositionList
{
public:
//- Transform patch-based field
void operator()
(
const coupledPolyPatch& cpp,
List<pointField>& pts
) const
{
// Each element of pts is all the points in the face. Convert into
// lists of size cpp to transform.
List<pointField> newPts(pts.size());
forAll(pts, faceI)
{
newPts[faceI].setSize(pts[faceI].size());
}
label index = 0;
while (true)
{
label n = 0;
// Extract for every face the i'th position
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
forAll(cpp, faceI)
{
const pointField& facePts = pts[faceI];
if (facePts.size() > index)
{
ptsAtIndex[faceI] = facePts[index];
n++;
}
}
if (n == 0)
{
break;
}
// Now ptsAtIndex will have for every face either zero or
// the position of the i'th vertex. Transform.
cpp.transformPosition(ptsAtIndex);
// Extract back from ptsAtIndex into newPts
forAll(cpp, faceI)
{
pointField& facePts = newPts[faceI];
if (facePts.size() > index)
{
facePts[index] = ptsAtIndex[faceI];
}
}
index++;
}
pts.transfer(newPts);
}
};
}
bool Foam::checkCoupledPoints
(
const polyMesh& mesh,
const bool report,
labelHashSet* setPtr
)
{
const pointField& p = mesh.points();
const faceList& fcs = mesh.faces();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Zero'th point on coupled faces
//pointField nbrZeroPoint(fcs.size()-mesh.nInternalFaces(), vector::max);
List<pointField> nbrPoints(fcs.size() - mesh.nInternalFaces());
// Exchange zero point
{
const coupledPolyPatch& cpp = refCast<const coupledPolyPatch>
(
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
);
forAll(cpp, i)
{
label bFaceI = cpp.start() + i - mesh.nInternalFaces();
const face& f = cpp[i];
nbrPoints[bFaceI].setSize(f.size());
forAll(f, fp)
{
const point& p0 = p[f[fp]];
nbrPoints[bFaceI][fp] = p0;
}
}
}
}
syncTools::syncBoundaryFaceList
(
mesh,
nbrPoints,
eqOp<pointField>(),
transformPositionList()
);
// Compare to local ones. Use same tolerance as for matching
label nErrorFaces = 0;
scalar avgMismatch = 0;
label nCoupledPoints = 0;
refCast<const coupledPolyPatch>(patches[patchi]);
if (cpp.owner())
{
scalarField smallDist
(
cpp.calcFaceTol
(
//cpp.matchTolerance(),
cpp,
cpp.points(),
cpp.faceCentres()
)
);
forAll(cpp, i)
{
label bFaceI = cpp.start() + i - mesh.nInternalFaces();
const face& f = cpp[i];
if (f.size() != nbrPoints[bFaceI].size())
{
FatalErrorInFunction
<< "Local face size : " << f.size()
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
<< " does not equal neighbour face size : "
<< nbrPoints[bFaceI].size()
<< abort(FatalError);
}
label fp = 0;
forAll(f, j)
{
const point& p0 = p[f[fp]];
scalar d = mag(p0 - nbrPoints[bFaceI][j]);
if (d > smallDist[i])
{
if (setPtr)
{
setPtr->insert(cpp.start()+i);
}
nErrorFaces++;
break;
}
avgMismatch += d;
nCoupledPoints++;
fp = f.rcIndex(fp);
}
}
}
}
}
reduce(nErrorFaces, sumOp<label>());
reduce(avgMismatch, maxOp<scalar>());
reduce(nCoupledPoints, sumOp<label>());
if (nCoupledPoints > 0)
{
avgMismatch /= nCoupledPoints;
}
if (nErrorFaces > 0)
{
if (report)
{
Info<< " **Error in coupled point location: "
<< nErrorFaces
<< " faces have their 0th or consecutive vertex not opposite"
<< " their coupled equivalent. Average mismatch "
<< avgMismatch << "."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< " Coupled point location match (average "
<< avgMismatch << ") OK." << endl;
}
return false;
}
}
Foam::label Foam::checkGeometry(const polyMesh& mesh, const bool allGeometry)
{
label noFailedChecks = 0;
Info<< "\nChecking geometry..." << endl;
// Get a small relative length from the bounding box
const boundBox& globalBb = mesh.bounds();
Info<< " Overall domain bounding box "
<< globalBb.min() << " " << globalBb.max() << endl;
// Min length
scalar minDistSqr = magSqr(1e-6 * globalBb.span());
// Geometric directions
const Vector<label> validDirs = (mesh.geometricD() + Vector<label>::one)/2;
Info<< " Mesh has " << mesh.nGeometricD()
<< " geometric (non-empty/wedge) directions " << validDirs << endl;
// Solution directions
const Vector<label> solDirs = (mesh.solutionD() + Vector<label>::one)/2;
Info<< " Mesh has " << mesh.nSolutionD()
<< " solution (non-empty) directions " << solDirs << endl;
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
if (mesh.nGeometricD() < 3)
{
pointSet nonAlignedPoints(mesh, "nonAlignedEdges", mesh.nPoints()/100);
if
(
(
validDirs != solDirs
&& checkWedges(mesh, true, validDirs, &nonAlignedPoints)
)
|| (
validDirs == solDirs
&& mesh.checkEdgeAlignment(true, validDirs, &nonAlignedPoints)
)
)
{
noFailedChecks++;
label nNonAligned = returnReduce
(
nonAlignedPoints.size(),
sumOp<label>()
);
if (nNonAligned > 0)
{
Info<< " <<Writing " << nNonAligned
<< " points on non-aligned edges to set "
<< nonAlignedPoints.name() << endl;
nonAlignedPoints.instance() = mesh.pointsInstance();
nonAlignedPoints.write();
}
}
}
if (mesh.checkClosedBoundary(true)) noFailedChecks++;
{
cellSet cells(mesh, "nonClosedCells", mesh.nCells()/100+1);
cellSet aspectCells(mesh, "highAspectRatioCells", mesh.nCells()/100+1);
if
(
mesh.checkClosedCells
(
true,
&cells,
&aspectCells,
mesh.geometricD()
)
)
{
noFailedChecks++;
label nNonClosed = returnReduce(cells.size(), sumOp<label>());
if (nNonClosed > 0)
{
Info<< " <<Writing " << nNonClosed
<< " non closed cells to set " << cells.name() << endl;
cells.instance() = mesh.pointsInstance();
cells.write();
}
}
label nHighAspect = returnReduce(aspectCells.size(), sumOp<label>());
if (nHighAspect > 0)
{
Info<< " <<Writing " << nHighAspect
<< " cells with high aspect ratio to set "
<< aspectCells.name() << endl;
aspectCells.instance() = mesh.pointsInstance();
aspectCells.write();
}
}
{
faceSet faces(mesh, "zeroAreaFaces", mesh.nFaces()/100+1);
if (mesh.checkFaceAreas(true, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " zero area faces to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
{
cellSet cells(mesh, "zeroVolumeCells", mesh.nCells()/100+1);
if (mesh.checkCellVolumes(true, &cells))
{
noFailedChecks++;
label nCells = returnReduce(cells.size(), sumOp<label>());
if (nCells > 0)
{
Info<< " <<Writing " << nCells
<< " zero volume cells to set " << cells.name() << endl;
cells.instance() = mesh.pointsInstance();
cells.write();
}
}
}
{
faceSet faces(mesh, "nonOrthoFaces", mesh.nFaces()/100+1);
if (mesh.checkFaceOrthogonality(true, &faces))
{
noFailedChecks++;
}
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " non-orthogonal faces to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
{
faceSet faces(mesh, "wrongOrientedFaces", mesh.nFaces()/100 + 1);
if (mesh.checkFacePyramids(true, -SMALL, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " faces with incorrect orientation to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
{
faceSet faces(mesh, "skewFaces", mesh.nFaces()/100+1);
if (mesh.checkFaceSkewness(true, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " skew faces to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
{
faceSet faces(mesh, "coupledFaces", mesh.nFaces()/100 + 1);
if (checkCoupledPoints(mesh, true, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " faces with incorrectly matched 0th (or consecutive)"
<< " vertex to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
if (allGeometry)
{
faceSet faces(mesh, "lowQualityTetFaces", mesh.nFaces()/100+1);
if
(
polyMeshTetDecomposition::checkFaceTets
(
mesh,
polyMeshTetDecomposition::minTetQuality,
true,
&faces
)
)
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " faces with low quality or negative volume "
<< "decomposition tets to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
if (allGeometry)
{
// Note use of nPoints since don't want edge construction.
pointSet points(mesh, "shortEdges", mesh.nPoints()/1000 + 1);
if (mesh.checkEdgeLength(true, minDistSqr, &points))
{
//noFailedChecks++;
label nPoints = returnReduce(points.size(), sumOp<label>());
if (nPoints > 0)
{
Info<< " <<Writing " << nPoints
<< " points on short edges to set " << points.name()
<< endl;
points.instance() = mesh.pointsInstance();
points.write();
}
}
label nEdgeClose = returnReduce(points.size(), sumOp<label>());
if (mesh.checkPointNearness(false, minDistSqr, &points))
{
//noFailedChecks++;
label nPoints = returnReduce(points.size(), sumOp<label>());
if (nPoints > nEdgeClose)
{
pointSet nearPoints(mesh, "nearPoints", points);
Info<< " <<Writing " << nPoints
<< " near (closer than " << Foam::sqrt(minDistSqr)
<< " apart) points to set " << nearPoints.name() << endl;
nearPoints.instance() = mesh.pointsInstance();
nearPoints.write();
}
}
}
if (allGeometry)
{
faceSet faces(mesh, "concaveFaces", mesh.nFaces()/100 + 1);
if (mesh.checkFaceAngles(true, 10, &faces))
{
//noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " faces with concave angles to set " << faces.name()
<< endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
if (allGeometry)
{
faceSet faces(mesh, "warpedFaces", mesh.nFaces()/100 + 1);
if (mesh.checkFaceFlatness(true, 0.8, &faces))
{
//noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " warped faces to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
}
if (allGeometry)
{
cellSet cells(mesh, "underdeterminedCells", mesh.nCells()/100);
if (mesh.checkCellDeterminant(true, &cells))
{
noFailedChecks++;
label nCells = returnReduce(cells.size(), sumOp<label>());
Info<< " <<Writing " << nCells
<< " under-determined cells to set " << cells.name() << endl;
cells.instance() = mesh.pointsInstance();
cells.write();
}
}
if (allGeometry)
{
cellSet cells(mesh, "concaveCells", mesh.nCells()/100);
if (mesh.checkConcaveCells(true, &cells))
{
noFailedChecks++;
label nCells = returnReduce(cells.size(), sumOp<label>());
Info<< " <<Writing " << nCells
<< " concave cells to set " << cells.name() << endl;
cells.instance() = mesh.pointsInstance();
cells.write();
}
}
if (allGeometry)
{
faceSet faces(mesh, "lowWeightFaces", mesh.nFaces()/100);
if (mesh.checkFaceWeight(true, 0.05, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
Info<< " <<Writing " << nFaces
<< " faces with low interpolation weights to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
if (allGeometry)
{
faceSet faces(mesh, "lowVolRatioFaces", mesh.nFaces()/100);
if (mesh.checkVolRatio(true, 0.01, &faces))
{
noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>());
Info<< " <<Writing " << nFaces
<< " faces with low volume ratio cells to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
}
}
return noFailedChecks;
}