Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015 OpenCFD Ltd.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "localPointRegion.H"
#include "syncTools.H"
#include "polyMesh.H"
#include "mapPolyMesh.H"
#include "globalIndex.H"
#include "indirectPrimitivePatch.H"
#include "dummyTransform.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(localPointRegion, 0);
// Reduction class to get minimum value over face.
class minEqOpFace
{
public:
void operator()(face& x, const face& y) const
{
if (x.size())
{
label j = 0;
forAll(x, i)
{
x[i] = min(x[i], y[j]);
j = y.rcIndex(j);
}
}
}
};
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Are two lists identical either in forward or in reverse order.
bool Foam::localPointRegion::isDuplicate
(
const face& f0,
const face& f1,
const bool forward
)
{
if (f0.size() != f1.size())
{
return false;
}
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
label fp1 = findIndex(f1, f0[0]);
if (fp1 == -1)
{
return false;
}
forAll(f0, fp0)
{
if (f0[fp0] != f1[fp1])
{
return false;
}
if (forward)
{
fp1 = f1.fcIndex(fp1);
}
else
{
fp1 = f1.rcIndex(fp1);
}
}
return true;
}
// Count regions per point
void Foam::localPointRegion::countPointRegions
(
const polyMesh& mesh,
const boolList& candidatePoint,
const Map<label>& candidateFace,
faceList& minRegion
)
{
// Almost all will have only one so only
// populate Map if more than one.
labelList minPointRegion(mesh.nPoints(), -1);
// From global point to local (multi-region) point numbering
meshPointMap_.resize(candidateFace.size()/100);
// From local (multi-region) point to regions
DynamicList<labelList> pointRegions(meshPointMap_.size());
// From faces with any duplicated point on it to local face
meshFaceMap_.resize(meshPointMap_.size());
forAllConstIter(Map<label>, candidateFace, iter)
{
label faceI = iter.key();
if (!mesh.isInternalFace(faceI))
{
const face& f = mesh.faces()[faceI];
if (minRegion[faceI].empty())
{
FatalErrorIn("localPointRegion::countPointRegions(..)")
<< "Face from candidateFace without minRegion set." << endl
<< "Face:" << faceI << " fc:" << mesh.faceCentres()[faceI]
<< " verts:" << f << abort(FatalError);
}
forAll(f, fp)
{
label pointI = f[fp];
// Even points which were not candidates for splitting might
// be on multiple baffles that are being split so check.
if (candidatePoint[pointI])
{
label region = minRegion[faceI][fp];
if (minPointRegion[pointI] == -1)
{
minPointRegion[pointI] = region;
}
else if (minPointRegion[pointI] != region)
{
// Multiple regions for this point. Add.
Map<label>::iterator iter = meshPointMap_.find(pointI);
if (iter != meshPointMap_.end())
{
labelList& regions = pointRegions[iter()];
if (findIndex(regions, region) == -1)
{
label sz = regions.size();
regions.setSize(sz+1);
regions[sz] = region;
}
}
else
{
label localPointI = meshPointMap_.size();
meshPointMap_.insert(pointI, localPointI);
labelList regions(2);
regions[0] = minPointRegion[pointI];
regions[1] = region;
pointRegions.append(regions);
}
label meshFaceMapI = meshFaceMap_.size();
meshFaceMap_.insert(faceI, meshFaceMapI);
}
}
}
}
}
minPointRegion.clear();
// Add internal faces that use any duplicated point. Can only have one
// region!
forAllConstIter(Map<label>, candidateFace, iter)
{
label faceI = iter.key();
if (mesh.isInternalFace(faceI))
{
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
// Note: candidatePoint test not really necessary but
// speeds up rejection.
if (candidatePoint[f[fp]] && meshPointMap_.found(f[fp]))
{
label meshFaceMapI = meshFaceMap_.size();
meshFaceMap_.insert(faceI, meshFaceMapI);
}
}
}
}
// Transfer to member data
pointRegions.shrink();
pointRegions_.setSize(pointRegions.size());
forAll(pointRegions, i)
{
pointRegions_[i].transfer(pointRegions[i]);
}
// Compact minRegion
faceRegions_.setSize(meshFaceMap_.size());
forAllConstIter(Map<label>, meshFaceMap_, iter)
{
faceRegions_[iter()].labelList::transfer(minRegion[iter.key()]);
//// Print a bit
//{
// label faceI = iter.key();
// const face& f = mesh.faces()[faceI];
// Pout<< "Face:" << faceI << " fc:" << mesh.faceCentres()[faceI]
// << " verts:" << f << endl;
// forAll(f, fp)
// {
// Pout<< " " << f[fp] << " min:" << faceRegions_[iter()][fp]
// << endl;
// }
// Pout<< endl;
//}
}
// Compact region numbering
// ? TBD.
}
void Foam::localPointRegion::calcPointRegions
(
const polyMesh& mesh,
const labelPairList& baffles,
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
boolList& candidatePoint
)
{
label nBnd = mesh.nFaces()-mesh.nInternalFaces();
const labelList& faceOwner = mesh.faceOwner();
const labelList& faceNeighbour = mesh.faceNeighbour();
syncTools::syncPointList
(
mesh,
candidatePoint,
orEqOp<bool>(),
false // nullValue
);
// Mark any face/boundaryFace/cell with a point on a candidate point.
// - candidateFace does not necessary have to be a baffle!
// - candidateFace is synchronised (since candidatePoint is)
Map<label> candidateFace(2*nBnd);
label candidateFaceI = 0;
Map<label> candidateCell(nBnd);
label candidateCellI = 0;
forAll(mesh.faces(), faceI)
{
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
if (candidatePoint[f[fp]])
{
// Mark face
if (candidateFace.insert(faceI, candidateFaceI))
{
candidateFaceI++;
}
// Mark cells
if (candidateCell.insert(faceOwner[faceI], candidateCellI))
{
candidateCellI++;
}
if (mesh.isInternalFace(faceI))
{
label nei = faceNeighbour[faceI];
if (candidateCell.insert(nei, candidateCellI))
{
candidateCellI++;
}
}
break;
}
}
}
// Get global indices for cells
globalIndex globalCells(mesh.nCells());
// Determine for every candidate face per point the minimum region
// (global cell) it is connected to. (candidateFaces are the
// only ones using a
// candidate point so the only ones that can be affected)
faceList minRegion(mesh.nFaces());
forAllConstIter(Map<label>, candidateFace, iter)
{
label faceI = iter.key();
const face& f = mesh.faces()[faceI];
if (mesh.isInternalFace(faceI))
{
label globOwn = globalCells.toGlobal(faceOwner[faceI]);
label globNei = globalCells.toGlobal(faceNeighbour[faceI]);
minRegion[faceI].setSize(f.size(), min(globOwn, globNei));
}
else
{
label globOwn = globalCells.toGlobal(faceOwner[faceI]);
minRegion[faceI].setSize(f.size(), globOwn);
}
}
// Now minimize over all faces that are connected through internal
// faces or through cells. This loop iterates over the max number of
// cells connected to a point (=8 for hex mesh)
while (true)
{
// Transport minimum from face across cell
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Map<label> minPointValue(100);
label nChanged = 0;
forAllConstIter(Map<label>, candidateCell, iter)
{
minPointValue.clear();
label cellI = iter.key();
const cell& cFaces = mesh.cells()[cellI];
// Determine minimum per point
forAll(cFaces, cFaceI)
{
label faceI = cFaces[cFaceI];
if (minRegion[faceI].size())
{
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
label pointI = f[fp];
Map<label>::iterator iter = minPointValue.find(pointI);
if (iter == minPointValue.end())
{
minPointValue.insert(pointI, minRegion[faceI][fp]);
}
else
{
label currentMin = iter();
iter() = min(currentMin, minRegion[faceI][fp]);
}
}
}
}
// Set face minimum from point minimum
forAll(cFaces, cFaceI)
{
label faceI = cFaces[cFaceI];
if (minRegion[faceI].size())
{
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
label minVal = minPointValue[f[fp]];
if (minVal != minRegion[faceI][fp])
{
minRegion[faceI][fp] = minVal;
nChanged++;
}
}
}
}
}
//Pout<< "nChanged:" << nChanged << endl;
if (returnReduce(nChanged, sumOp<label>()) == 0)
{
break;
}
// Transport minimum across coupled faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SubList<face> l
(
minRegion,
mesh.nFaces()-mesh.nInternalFaces(),
mesh.nInternalFaces()
);
syncTools::syncBoundaryFaceList
(
mesh,
l,
minEqOpFace(),
Foam::dummyTransform() // dummy transformation
);
forAll(baffles, i)
{
label f0 = baffles[i].first();
label f1 = baffles[i].second();
minEqOpFace()(minRegion[f0], minRegion[f1]);
minRegion[f1] = minRegion[f0];
}
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
}
// Count regions per point
countPointRegions(mesh, candidatePoint, candidateFace, minRegion);
minRegion.clear();
//// Print points with multiple regions. These points need to be duplicated.
//forAllConstIter(Map<label>, meshPointMap_, iter)
//{
// Pout<< "point:" << iter.key()
// << " coord:" << mesh.points()[iter.key()]
// << " regions:" << pointRegions_[iter()] << endl;
//}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::localPointRegion::localPointRegion(const polyMesh& mesh)
:
//nRegions_(0),
meshPointMap_(0),
pointRegions_(0),
meshFaceMap_(0),
faceRegions_(0)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Get any point on the outside which is on a non-coupled boundary
boolList candidatePoint(mesh.nPoints(), false);
forAll(patches, patchI)
{
if (!patches[patchI].coupled())
{
const polyPatch& pp = patches[patchI];
forAll(pp.meshPoints(), i)
{
candidatePoint[pp.meshPoints()[i]] = true;
}
}
}
calcPointRegions(mesh, labelPairList(0), candidatePoint);
}
Foam::localPointRegion::localPointRegion
(
const polyMesh& mesh,
const labelList& candidatePoints
)
:
//nRegions_(0),
meshPointMap_(0),
pointRegions_(0),
meshFaceMap_(0),
faceRegions_(0)
{
boolList candidatePoint(mesh.nPoints(), false);
forAll(candidatePoints, i)
{
candidatePoint[candidatePoints[i]] = true;
}
calcPointRegions(mesh, labelPairList(0), candidatePoint);
}
Foam::localPointRegion::localPointRegion
(
const polyMesh& mesh,
const labelPairList& baffles,
const labelList& candidatePoints
)
:
//nRegions_(0),
meshPointMap_(0),
pointRegions_(0),
meshFaceMap_(0),
faceRegions_(0)
{
boolList candidatePoint(mesh.nPoints(), false);
forAll(candidatePoints, i)
{
candidatePoint[candidatePoints[i]] = true;
}
calcPointRegions(mesh, baffles, candidatePoint);
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
// Return a list (in allPatch indices) with either -1 or the face label
// of the face that uses the same vertices.
Foam::labelList Foam::localPointRegion::findDuplicateFaces
(
const primitiveMesh& mesh,
const labelList& boundaryFaces
)
{
// Addressing engine for all boundary faces.
indirectPrimitivePatch allPatch
(
IndirectList<face>(mesh.faces(), boundaryFaces),
mesh.points()
);
labelList duplicateFace(allPatch.size(), -1);
label nDuplicateFaces = 0;
// Find all duplicate faces.
forAll(allPatch, bFaceI)
{
const face& f = allPatch.localFaces()[bFaceI];
// Get faces connected to f[0].
// Check whether share all points with f.
const labelList& pFaces = allPatch.pointFaces()[f[0]];
forAll(pFaces, i)
{
label otherFaceI = pFaces[i];
if (otherFaceI > bFaceI)
{
const face& otherF = allPatch.localFaces()[otherFaceI];
if (isDuplicate(f, otherF, true))
{
FatalErrorIn
(
"findDuplicateFaces(const primitiveMesh&"
", const labelList&)"
) << "Face:" << bFaceI + mesh.nInternalFaces()
<< " has local points:" << f
<< " which are in same order as face:"
<< otherFaceI + mesh.nInternalFaces()
<< " with local points:" << otherF
<< abort(FatalError);
}
else if (isDuplicate(f, otherF, false))
{
label meshFace0 = bFaceI + mesh.nInternalFaces();
label meshFace1 = otherFaceI + mesh.nInternalFaces();
if
(
duplicateFace[bFaceI] != -1
|| duplicateFace[otherFaceI] != -1
)
{
FatalErrorIn
(
"findDuplicateFaces(const primitiveMesh&"
", const labelList&)"
) << "One of two duplicate faces already marked"
<< " as duplicate." << nl
<< "This means that three or more faces share"
<< " the same points and this is illegal." << nl
<< "Face:" << meshFace0
<< " with local points:" << f
<< " which are in same order as face:"
<< meshFace1
<< " with local points:" << otherF
<< abort(FatalError);
}
duplicateFace[bFaceI] = otherFaceI;
duplicateFace[otherFaceI] = bFaceI;
nDuplicateFaces++;
}
}
}
}
return duplicateFace;
}
Foam::List<Foam::labelPair> Foam::localPointRegion::findDuplicateFacePairs
(
const polyMesh& mesh
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Faces to test: all boundary faces
labelList testFaces
(
identity(mesh.nFaces()-mesh.nInternalFaces())
+ mesh.nInternalFaces()
);
// Find correspondencing baffle face (or -1)
const labelList duplicateFace(findDuplicateFaces(mesh, testFaces));
// Convert into list of coupled face pairs (mesh face labels).
DynamicList<labelPair> baffles(testFaces.size());
forAll(duplicateFace, i)
{
label otherFaceI = duplicateFace[i];
if (otherFaceI != -1 && i < otherFaceI)
{
label meshFace0 = testFaces[i];
label patch0 = patches.whichPatch(meshFace0);
label meshFace1 = testFaces[otherFaceI];
label patch1 = patches.whichPatch(meshFace1);
// Check for illegal topology. Should normally not happen!
if
(
(patch0 != -1 && isA<processorPolyPatch>(patches[patch0]))
|| (patch1 != -1 && isA<processorPolyPatch>(patches[patch1]))
)
{
FatalErrorIn
(
"localPointRegion::findDuplicateFacePairs(const polyMesh&)"
) << "One of two duplicate faces is on"
<< " processorPolyPatch."
<< "This is not allowed." << nl
<< "Face:" << meshFace0
<< " fc:" << mesh.faceCentres()[meshFace0]
<< " is on patch:" << patches[patch0].name()
<< nl
<< "Face:" << meshFace1
<< " fc:" << mesh.faceCentres()[meshFace1]
<< " is on patch:" << patches[patch1].name()
<< abort(FatalError);
}
else
{
baffles.append(labelPair(meshFace0, meshFace1));
}
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
}
}
return baffles.shrink();
}
void Foam::localPointRegion::updateMesh(const mapPolyMesh& map)
{
{
Map<label> newMap(meshFaceMap_.size());
forAllConstIter(Map<label>, meshFaceMap_, iter)
{
label newFaceI = map.reverseFaceMap()[iter.key()];
if (newFaceI >= 0)
{
newMap.insert(newFaceI, iter());
}
}
meshFaceMap_.transfer(newMap);
}
{
Map<label> newMap(meshPointMap_.size());
forAllConstIter(Map<label>, meshPointMap_, iter)
{
label newPointI = map.reversePointMap()[iter.key()];
if (newPointI >= 0)
{
newMap.insert(newPointI, iter());
}
}
meshPointMap_.transfer(newMap);
}
}
// ************************************************************************* //