Skip to content
Snippets Groups Projects
  1. Apr 30, 2016
    • Henry Weller's avatar
      Updated headers · 4da46e7c
      Henry Weller authored
      4da46e7c
    • Henry Weller's avatar
      GeometricField: Renamed internalField() -> primitiveField() and... · fe43b805
      Henry Weller authored
      GeometricField: Renamed internalField() -> primitiveField() and dimensionedInternalField() -> internalField()
      
      These new names are more consistent and logical because:
      
      primitiveField():
      primitiveFieldRef():
          Provides low-level access to the Field<Type> (primitive field)
          without dimension or mesh-consistency checking.  This should only be
          used in the low-level functions where dimensional consistency is
          ensured by careful programming and computational efficiency is
          paramount.
      
      internalField():
      internalFieldRef():
          Provides access to the DimensionedField<Type, GeoMesh> of values on
          the internal mesh-type for which the GeometricField is defined and
          supports dimension and checking and mesh-consistency checking.
      fe43b805
    • Henry Weller's avatar
      GeometricField::dimensionedInteralFieldRef() -> GeometricField::ref() · 68fb9a2b
      Henry Weller authored
      In order to simplify expressions involving dimensioned internal field it
      is preferable to use a simpler access convention.  Given that
      GeometricField is derived from DimensionedField it is simply a matter of
      de-referencing this underlying type unlike the boundary field which is
      peripheral information.  For consistency with the new convention in
      "tmp"  "dimensionedInteralFieldRef()" has been renamed "ref()".
      68fb9a2b
    • Henry Weller's avatar
      CrankNicolsonDdtScheme: Use the new GeometricField constructor from... · bd911f60
      Henry Weller authored
      CrankNicolsonDdtScheme: Use the new GeometricField constructor from DimensionedField and boundary FieldField
      bd911f60
    • Henry Weller's avatar
      GeometricField::internalField() -> GeometricField::internalFieldRef() · e1e99674
      Henry Weller authored
      Non-const access to the internal field now obtained from a specifically
      named access function consistent with the new names for non-canst access
      to the boundary field boundaryFieldRef() and dimensioned internal field
      dimensionedInternalFieldRef().
      
      See also commit a4e2afa4
      e1e99674
    • Henry Weller's avatar
      functionObjectFile: Separated into functionObjectFile and functionObjectFiles · 7155ef61
      Henry Weller authored
      functionObjectFile provides basic directory, file and formatting functions
      functionObjectFiles provides multi-file cache
      7155ef61
  2. Apr 29, 2016
  3. Apr 28, 2016
  4. Apr 27, 2016
  5. Apr 26, 2016
  6. Apr 25, 2016
  7. Apr 24, 2016
  8. Apr 23, 2016
    • Henry Weller's avatar
      Updated header · 40ec00b5
      Henry Weller authored
      40ec00b5
    • Henry Weller's avatar
      boundaryField() -> boundaryFieldRef() · 77cad08d
      Henry Weller authored
      77cad08d
    • Henry Weller's avatar
      boundaryField() -> boundaryFieldRef() · 89397e80
      Henry Weller authored
      89397e80
    • Henry Weller's avatar
      GeometricField: New non-const access function boundaryFieldRef() · c25b48a7
      Henry Weller authored
      There is a need to specify const or non-const access to a non-const
      object which is not currently possible with the "boundaryField()" access
      function the const-ness of the return of which is defined by the
      const-ness of the object for which it is called.  For consistency with
      the latest "tmp" storage class in which non-const access is obtained
      with the "ref()" function it is proposed to replace the non-const form
      of "boundaryField()" with "boundaryFieldRef()".
      
      Thanks to Mattijs Janssens for starting the process of migration to
      "boundaryFieldRef()" and providing a patch for the OpenFOAM and
      finiteVolume libraries.
      c25b48a7
    • Henry Weller's avatar
      plenumPressureFvPatchScalarField: New plenum pressure boundary condition · b63a532a
      Henry Weller authored
      This condition creates a zero-dimensional model of an enclosed volume of
      gas upstream of the inlet. The pressure that the boundary condition
      exerts on the inlet boundary is dependent on the thermodynamic state of
      the upstream volume.  The upstream plenum density and temperature are
      time-stepped along with the rest of the simulation, and momentum is
      neglected. The plenum is supplied with a user specified mass flow and
      temperature.
      
      The result is a boundary condition which blends between a pressure inlet
      condition condition and a fixed mass flow. The smaller the plenum
      volume, the quicker the pressure responds to a deviation from the supply
      mass flow, and the closer the model approximates a fixed mass flow. As
      the plenum size increases, the model becomes more similar to a specified
      pressure.
      
      The expansion from the plenum to the inlet boundary is controlled by an
      area ratio and a discharge coefficient. The area ratio can be used to
      represent further acceleration between a sub-grid blockage such as fins.
      The discharge coefficient represents a fractional deviation from an
      ideal expansion process.
      
      This condition is useful for simulating unsteady internal flow problems
      for which both a mass flow boundary is unrealistic, and a pressure
      boundary is susceptible to flow reversal. It was developed for use in
      simulating confined combustion.
      
      tutorials/compressible/rhoPimpleFoam/laminar/helmholtzResonance:
          helmholtz resonance tutorial case for plenum pressure boundary
      
      This development was contributed by Will Bainbridge
      b63a532a
    • Henry Weller's avatar
      fireFoam: Added optional hydrostatic initialization of the pressure and density · 2c6b4050
      Henry Weller authored
      Also added the new prghTotalHydrostaticPressure p_rgh BC which uses the
      hydrostatic pressure field as the reference state for the far-field
      which provides much more accurate entrainment is large open domains
      typical of many fire simulations.
      
      The hydrostatic field solution is controlled by the optional entries in
      the fvSolution.PIMPLE dictionary, e.g.
      
          hydrostaticInitialization yes;
          nHydrostaticCorrectors 5;
      
      and the solver must also be specified for the hydrostatic p_rgh field
      ph_rgh e.g.
      
          ph_rgh
          {
              $p_rgh;
          }
      
      Suitable boundary conditions for ph_rgh cannot always be derived from
      those for p_rgh and so the ph_rgh is read to provide them.
      
      To avoid accuracy issues with IO, restart and post-processing the p_rgh
      and ph_rgh the option to specify a suitable reference pressure is
      provided via the optional pRef file in the constant directory, e.g.
      
          dimensions      [1 -1 -2 0 0 0 0];
          value           101325;
      
      which is used in the relationship between p_rgh and p:
      
          p = p_rgh + rho*gh + pRef;
      
      Note that if pRef is specified all pressure BC specifications in the
      p_rgh and ph_rgh files are relative to the reference to avoid round-off
      errors.
      
      For examples of suitable BCs for p_rgh and ph_rgh for a range of
      fireFoam cases please study the tutorials in
      tutorials/combustion/fireFoam/les which have all been updated.
      
      Henry G. Weller
      CFD Direct Ltd.
      2c6b4050
    • Henry Weller's avatar
  9. Apr 22, 2016