Skip to content
Snippets Groups Projects

coordinate system improvements

Merged Mark OLESEN requested to merge feature-coordinateSystem into develop
  1. Oct 10, 2018
  2. Oct 05, 2018
    • Mark OLESEN's avatar
      STYLE: enforce Cartesian transform (issue #1027) · b6c60eb5
      Mark OLESEN authored
      - searchable surfaces
      - pointToPointPlanarInterpolation
      - sampled planes
      - surfaceMeshConvert, surfaceMeshExport, surfaceMeshImport
      b6c60eb5
    • Mark OLESEN's avatar
      ENH: correct suspicious coordinate system conversions (issue #1027) · 031887d8
      Mark OLESEN authored
      - arraySet :
           was translate + transform
           now use globalPosition (== transform + translate).
      
           Explicitly limit to Cartesian coordinate system for clarity.
      031887d8
    • Mark OLESEN's avatar
      ENH: improve, simplify, rationalize coordinate system handling (issue #863) · c75d5118
      Mark OLESEN authored
      Previously the coordinate system functionality was split between
      coordinateSystem and coordinateRotation. The coordinateRotation stored
      the rotation tensor and handled all tensor transformations.
      
      The functionality has now been revised and consolidated into the
      coordinateSystem classes. The sole purpose of coordinateRotation
      is now just to provide a selectable mechanism of how to define the
      rotation tensor (eg, axis-angle, euler angles, local axes) for user
      input, but after providing the appropriate rotation tensor it has
      no further influence on the transformations.
      
      --
      
      The coordinateSystem class now contains an origin and a base rotation
      tensor directly and various transformation methods.
      
        - The origin represents the "shift" for a local coordinate system.
      
        - The base rotation tensor represents the "tilt" or orientation
          of the local coordinate system in general (eg, for mapping
          positions), but may require position-dependent tensors when
          transforming vectors and tensors.
      
      For some coordinate systems (currently the cylindrical coordinate system),
      the rotation tensor required for rotating a vector or tensor is
      position-dependent.
      
      The new coordinateSystem and its derivates (cartesian, cylindrical,
      indirect) now provide a uniform() method to define if the rotation
      tensor is position dependent/independent.
      
      The coordinateSystem transform and invTransform methods are now
      available in two-parameter forms for obtaining position-dependent
      rotation tensors. Eg,
      
            ... = cs.transform(globalPt, someVector);
      
      In some cases it can be useful to use query uniform() to avoid
      storage of redundant values.
      
            if (cs.uniform())
            {
                vector xx = cs.transform(someVector);
            }
            else
            {
                List<vector> xx = cs.transform(manyPoints, someVector);
            }
      
      Support transform/invTransform for common data types:
         (scalar, vector, sphericalTensor, symmTensor, tensor).
      
      ====================
        Breaking Changes
      ====================
      
      - These changes to coordinate systems and rotations may represent
        a breaking change for existing user coding.
      
      - Relocating the rotation tensor into coordinateSystem itself means
        that the coordinate system 'R()' method now returns the rotation
        directly instead of the coordinateRotation. The method name 'R()'
        was chosen for consistency with other low-level entities (eg,
        quaternion).
      
        The following changes will be needed in coding:
      
            Old:  tensor rot = cs.R().R();
            New:  tensor rot = cs.R();
      
            Old:  cs.R().transform(...);
            New:  cs.transform(...);
      
        Accessing the runTime selectable coordinateRotation
        has moved to the rotation() method:
      
            Old:  Info<< "Rotation input: " << cs.R() << nl;
            New:  Info<< "Rotation input: " << cs.rotation() << nl;
      
      - Naming consistency changes may also cause code to break.
      
            Old:  transformVector()
            New:  transformPrincipal()
      
        The old method name transformTensor() now simply becomes transform().
      
      ====================
        New methods
      ====================
      
      For operations requiring caching of the coordinate rotations, the
      'R()' method can be used with multiple input points:
      
             tensorField rots(cs.R(somePoints));
      
         and later
      
             Foam::transformList(rots, someVectors);
      
      The rotation() method can also be used to change the rotation tensor
      via a new coordinateRotation definition (issue #879).
      
      The new methods transformPoint/invTransformPoint provide
      transformations with an origin offset using Cartesian for both local
      and global points. These can be used to determine the local position
      based on the origin/rotation without interpreting it as a r-theta-z
      value, for example.
      
      ================
        Input format
      ================
      
      - Streamline dictionary input requirements
      
        * The default type is cartesian.
        * The default rotation type is the commonly used axes rotation
          specification (with e1/e2/3), which is assumed if the 'rotation'
          sub-dictionary does not exist.
      
          Example,
      
          Compact specification:
      
              coordinateSystem
              {
                  origin  (0 0 0);
                  e2      (0 1 0);
                  e3      (0.5 0 0.866025);
              }
      
          Full specification (also accepts the longer 'coordinateRotation'
          sub-dictionary name):
      
              coordinateSystem
              {
                  type    cartesian;
                  origin  (0 0 0);
      
                  rotation
                  {
                      type    axes;
                      e2      (0 1 0);
                      e3      (0.5 0 0.866025);
                  }
              }
      
         This simplifies the input for many cases.
      
      - Additional rotation specification 'none' (an identity rotation):
      
            coordinateSystem
            {
                origin  (0 0 0);
                rotation { type none; }
            }
      
      - Additional rotation specification 'axisAngle', which is similar
        to the -rotate-angle option for transforming points (issue #660).
        For some cases this can be more intuitive.
      
        For example,
      
            rotation
            {
                type    axisAngle;
                axis    (0 1 0);
                angle   30;
            }
        vs.
            rotation
            {
                type    axes;
                e2      (0 1 0);
                e3      (0.5 0 0.866025);
            }
      
      - shorter names (or older longer names) for the coordinate rotation
        specification.
      
           euler         EulerRotation
           starcd        STARCDRotation
           axes          axesRotation
      
      ================
        Coding Style
      ================
      - use Foam::coordSystem namespace for categories of coordinate systems
        (cartesian, cylindrical, indirect). This reduces potential name
        clashes and makes a clearer declaration. Eg,
      
            coordSystem::cartesian csys_;
      
        The older names (eg, cartesianCS, etc) remain available via typedefs.
      
      - added coordinateRotations namespace for better organization and
        reduce potential name clashes.
      c75d5118
    • Mark OLESEN's avatar
    • Mark OLESEN's avatar
      ENH: cylindricalCS is now in radians only (issue #863) · e2182625
      Mark OLESEN authored
      - this provides internal consistency and allows direct use of the
        coordinate angle with sin(), cos() functions.
        It eliminates potential issues that could otherwise arise from
        alternative user input.
      
        Eg, in mixerFvMesh it would have previously been possible to specify
        the coordinate system to use degrees or radians, but these units were
        not checked when determining the tangential sweep positions.
      
      NOTE: this may represent a breaking change if user coding has been
      relying on cylindrical coordinate system in degrees.
      e2182625