Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
InNamespace
Foam
Description
3D tensor transformation operations.
\*---------------------------------------------------------------------------*/
#ifndef transform_H
#define transform_H
#include "tensor.H"
henry
committed
#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
inline tensor rotationTensor
(
const vector& n1,
const vector& n2
)
{
const scalar s = n1 & n2;
const vector n3 = n1 ^ n2;
const scalar magSqrN3 = magSqr(n3);
// n1 and n2 define a plane n3
if (magSqrN3 > SMALL)
{
// Return rotational transformation tensor in the n3-plane
return
s*I
+ (1 - s)*sqr(n3)/magSqrN3
+ (n2*n1 - n1*n2);
}
// n1 and n2 are contradirectional
else if (s < 0)
{
// Return mirror transformation tensor
return I + 2*n1*n2;
}
// n1 and n2 are codirectional
else
{
// Return null transformation tensor
return I;
}
inline label transform(const tensor&, const bool i)
{
return i;
}
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
inline label transform(const tensor&, const label i)
{
return i;
}
inline scalar transform(const tensor&, const scalar s)
{
return s;
}
template<class Cmpt>
inline Vector<Cmpt> transform(const tensor& tt, const Vector<Cmpt>& v)
{
return tt & v;
}
template<class Cmpt>
inline Tensor<Cmpt> transform(const tensor& tt, const Tensor<Cmpt>& t)
{
return Tensor<Cmpt>
(
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.xx()
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.xy()
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.xz(),
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.yx()
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.yy()
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.yz(),
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.zx()
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.zy()
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.zz(),
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.xx()
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.xy()
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.xz(),
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.yx()
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.yy()
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.yz(),
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.zx()
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.zy()
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.zz(),
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.xx()
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.xy()
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.xz(),
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.yx()
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.yy()
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.yz(),
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.zx()
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.zy()
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.zz()
);
}
template<class Cmpt>
inline SphericalTensor<Cmpt> transform
(
const tensor& tt,
const SphericalTensor<Cmpt>& st
)
{
return st;
}
template<class Cmpt>
inline SymmTensor<Cmpt> transform(const tensor& tt, const SymmTensor<Cmpt>& st)
{
return SymmTensor<Cmpt>
(
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.xx()
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.xy()
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.xz(),
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.yx()
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.yy()
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.yz(),
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.zx()
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.zy()
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.zz(),
(tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.yx()
+ (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.yy()
+ (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.yz(),
(tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.zx()
+ (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.zy()
+ (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.zz(),
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
(tt.zx()*st.xx() + tt.zy()*st.xy() + tt.zz()*st.xz())*tt.zx()
+ (tt.zx()*st.xy() + tt.zy()*st.yy() + tt.zz()*st.yz())*tt.zy()
+ (tt.zx()*st.xz() + tt.zy()*st.yz() + tt.zz()*st.zz())*tt.zz()
);
}
template<class Type1, class Type2>
inline Type1 transformMask(const Type2& t)
{
return t;
}
template<>
inline sphericalTensor transformMask<sphericalTensor>(const tensor& t)
{
return sph(t);
}
template<>
inline symmTensor transformMask<symmTensor>(const tensor& t)
{
return symm(t);
}
//- Estimate angle of vec in coordinate system (e0, e1, e0^e1).
// Is guaranteed to return increasing number but is not correct
// angle. Used for sorting angles. All input vectors need to be normalized.
//
// Calculates scalar which increases with angle going from e0 to vec in
// the coordinate system e0, e1, e0^e1
// Jumps from 2*pi -> 0 at -SMALL so hopefully parallel vectors with small
// rounding errors should still get the same quadrant.
//
inline scalar pseudoAngle
(
const vector& e0,
const vector& e1,
const vector& vec
)
{
scalar cos = vec & e0;
scalar sin = vec & e1;
if (sin < -SMALL)
{
henry
committed
return (3.0 + cos)*constant::mathematical::piByTwo;
henry
committed
return (1.0 - cos)*constant::mathematical::piByTwo;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //