Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
mattijs
committed
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "mappedPatchBase.H"
#include "addToRunTimeSelectionTable.H"
#include "ListListOps.H"
#include "meshSearchMeshObject.H"
#include "meshTools.H"
#include "OFstream.H"
#include "Random.H"
#include "treeDataFace.H"
#include "indexedOctree.H"
#include "polyMesh.H"
#include "polyPatch.H"
#include "Time.H"
#include "mapDistribute.H"
#include "SubField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(mappedPatchBase, 0);
template<>
const char* Foam::NamedEnum
<
Foam::mappedPatchBase::sampleMode,
>::names[] =
{
"nearestCell",
"nearestPatchFace",
"nearestFace"
};
template<>
const char* Foam::NamedEnum
<
Foam::mappedPatchBase::offsetMode,
3
>::names[] =
{
"uniform",
"nonuniform",
"normal"
};
}
const Foam::NamedEnum<Foam::mappedPatchBase::sampleMode, 4>
Foam::mappedPatchBase::sampleModeNames_;
const Foam::NamedEnum<Foam::mappedPatchBase::offsetMode, 3>
Foam::mappedPatchBase::offsetModeNames_;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::tmp<Foam::pointField> Foam::mappedPatchBase::facePoints
(
const polyPatch& pp
) const
{
const polyMesh& mesh = pp.boundaryMesh().mesh();
// Force construction of min-tet decomp
(void)mesh.tetBasePtIs();
// Initialise to face-centre
tmp<pointField> tfacePoints(new pointField(patch_.size()));
pointField& facePoints = tfacePoints();
forAll(pp, faceI)
{
facePoints[faceI] = facePoint
(
mesh,
pp.start()+faceI,
polyMesh::FACEDIAGTETS
).rawPoint();
}
return tfacePoints;
}
void Foam::mappedPatchBase::collectSamples
(
const pointField& facePoints,
pointField& samples,
labelList& patchFaceProcs,
labelList& patchFaces,
pointField& patchFc
) const
{
// Collect all sample points and the faces they come from.
{
List<pointField> globalFc(Pstream::nProcs());
globalFc[Pstream::myProcNo()] = facePoints;
Pstream::gatherList(globalFc);
Pstream::scatterList(globalFc);
// Rework into straight list
patchFc = ListListOps::combine<pointField>
(
globalFc,
accessOp<pointField>()
);
}
{
List<pointField> globalSamples(Pstream::nProcs());
globalSamples[Pstream::myProcNo()] = samplePoints(facePoints);
Pstream::gatherList(globalSamples);
Pstream::scatterList(globalSamples);
// Rework into straight list
samples = ListListOps::combine<pointField>
(
globalSamples,
accessOp<pointField>()
);
}
{
labelListList globalFaces(Pstream::nProcs());
globalFaces[Pstream::myProcNo()] = identity(patch_.size());
// Distribute to all processors
Pstream::gatherList(globalFaces);
Pstream::scatterList(globalFaces);
patchFaces = ListListOps::combine<labelList>
(
globalFaces,
accessOp<labelList>()
labelList nPerProc(Pstream::nProcs());
nPerProc[Pstream::myProcNo()] = patch_.size();
Pstream::gatherList(nPerProc);
Pstream::scatterList(nPerProc);
patchFaceProcs.setSize(patchFaces.size());
label sampleI = 0;
forAll(nPerProc, procI)
for (label i = 0; i < nPerProc[procI]; i++)
{
patchFaceProcs[sampleI++] = procI;
}
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
}
}
}
// Find the processor/cell containing the samples. Does not account
// for samples being found in two processors.
void Foam::mappedPatchBase::findSamples
(
const pointField& samples,
labelList& sampleProcs,
labelList& sampleIndices,
pointField& sampleLocations
) const
{
// Lookup the correct region
const polyMesh& mesh = sampleMesh();
// All the info for nearest. Construct to miss
List<nearInfo> nearest(samples.size());
switch (mode_)
{
case NEARESTCELL:
{
if (samplePatch_.size() && samplePatch_ != "none")
{
FatalErrorIn
(
"mappedPatchBase::findSamples(const pointField&,"
" labelList&, labelList&, pointField&) const"
) << "No need to supply a patch name when in "
<< sampleModeNames_[mode_] << " mode." << exit(FatalError);
}
//- Note: face-diagonal decomposition
const meshSearchMeshObject& meshSearchEngine =
meshSearchMeshObject::New(mesh);
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
label cellI = meshSearchEngine.findCell(sample);
if (cellI == -1)
{
nearest[sampleI].second().first() = Foam::sqr(GREAT);
nearest[sampleI].second().second() = Pstream::myProcNo();
}
else
{
const point& cc = mesh.cellCentres()[cellI];
nearest[sampleI].first() = pointIndexHit
(
true,
cc,
cellI
);
nearest[sampleI].second().first() = magSqr(cc-sample);
nearest[sampleI].second().second() = Pstream::myProcNo();
}
}
break;
}
case NEARESTPATCHFACE:
{
Random rndGen(123456);
const polyPatch& pp = samplePolyPatch();
if (pp.empty())
{
forAll(samples, sampleI)
{
nearest[sampleI].second().first() = Foam::sqr(GREAT);
nearest[sampleI].second().second() = Pstream::myProcNo();
}
}
else
{
// patch faces
const labelList patchFaces(identity(pp.size()) + pp.start());
treeBoundBox patchBb
(
treeBoundBox(pp.points(), pp.meshPoints()).extend
(
rndGen,
1E-4
)
);
patchBb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
patchBb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
indexedOctree<treeDataFace> boundaryTree
(
treeDataFace // all information needed to search faces
(
false, // do not cache bb
mesh,
patchFaces // boundary faces only
),
patchBb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
);
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
pointIndexHit& nearInfo = nearest[sampleI].first();
nearInfo = boundaryTree.findNearest
(
sample,
magSqr(patchBb.span())
);
if (!nearInfo.hit())
{
nearest[sampleI].second().first() = Foam::sqr(GREAT);
nearest[sampleI].second().second() =
Pstream::myProcNo();
}
else
{
point fc(pp[nearInfo.index()].centre(pp.points()));
nearInfo.setPoint(fc);
nearest[sampleI].second().first() = magSqr(fc-sample);
nearest[sampleI].second().second() =
Pstream::myProcNo();
}
}
}
break;
}
case NEARESTFACE:
{
if (samplePatch_.size() && samplePatch_ != "none")
{
FatalErrorIn
(
"mappedPatchBase::findSamples(const pointField&,"
" labelList&, labelList&, pointField&) const"
) << "No need to supply a patch name when in "
<< sampleModeNames_[mode_] << " mode." << exit(FatalError);
}
//- Note: face-diagonal decomposition
const meshSearchMeshObject& meshSearchEngine =
meshSearchMeshObject::New(mesh);
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
label faceI = meshSearchEngine.findNearestFace(sample);
if (faceI == -1)
{
nearest[sampleI].second().first() = Foam::sqr(GREAT);
nearest[sampleI].second().second() = Pstream::myProcNo();
}
else
{
const point& fc = mesh.faceCentres()[faceI];
nearest[sampleI].first() = pointIndexHit
(
true,
fc,
faceI
);
nearest[sampleI].second().first() = magSqr(fc-sample);
nearest[sampleI].second().second() = Pstream::myProcNo();
}
}
break;
}
case NEARESTPATCHFACEAMI:
{
// nothing to do here
return;
}
default:
{
FatalErrorIn("mappedPatchBase::findSamples(..)")
<< "problem." << abort(FatalError);
}
}
// Find nearest
Pstream::listCombineGather(nearest, nearestEqOp());
Pstream::listCombineScatter(nearest);
if (debug)
{
Info<< "mappedPatchBase::findSamples on mesh " << sampleRegion_
<< " : " << endl;
forAll(nearest, sampleI)
{
label procI = nearest[sampleI].second().second();
label localI = nearest[sampleI].first().index();
Info<< " " << sampleI << " coord:"<< samples[sampleI]
<< " found on processor:" << procI
<< " in local cell/face:" << localI
<< " with cc:" << nearest[sampleI].first().rawPoint() << endl;
}
}
// Convert back into proc+local index
sampleProcs.setSize(samples.size());
sampleIndices.setSize(samples.size());
sampleLocations.setSize(samples.size());
forAll(nearest, sampleI)
{
if (!nearest[sampleI].first().hit())
{
sampleProcs[sampleI] = -1;
sampleIndices[sampleI] = -1;
sampleLocations[sampleI] = vector::max;
}
else
{
sampleProcs[sampleI] = nearest[sampleI].second().second();
sampleIndices[sampleI] = nearest[sampleI].first().index();
sampleLocations[sampleI] = nearest[sampleI].first().hitPoint();
}
}
}
void Foam::mappedPatchBase::calcMapping() const
{
static bool hasWarned = false;
if (mapPtr_.valid())
{
FatalErrorIn("mappedPatchBase::calcMapping() const")
<< "Mapping already calculated" << exit(FatalError);
}
// Get points on face (since cannot use face-centres - might be off
// face-diagonal decomposed tets.
tmp<pointField> patchPoints(facePoints(patch_));
// Get offsetted points
const pointField offsettedPoints = samplePoints(patchPoints());
// Do a sanity check
// Am I sampling my own patch? This only makes sense for a non-zero
// offset.
bool sampleMyself =
(
mode_ == NEARESTPATCHFACE
&& sampleRegion_ == patch_.boundaryMesh().mesh().name()
&& samplePatch_ == patch_.name()
);
// Check offset
vectorField d(offsettedPoints-patchPoints());
bool coincident = (gAverage(mag(d)) <= ROOTVSMALL);
if (sampleMyself && coincident)
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
WarningIn
(
"mappedPatchBase::mappedPatchBase\n"
"(\n"
" const polyPatch& pp,\n"
" const word& sampleRegion,\n"
" const sampleMode mode,\n"
" const word& samplePatch,\n"
" const vector& offset\n"
")\n"
) << "Invalid offset " << d << endl
<< "Offset is the vector added to the patch face centres to"
<< " find the patch face supplying the data." << endl
<< "Setting it to " << d
<< " on the same patch, on the same region"
<< " will find the faces themselves which does not make sense"
<< " for anything but testing." << endl
<< "patch_:" << patch_.name() << endl
<< "sampleRegion_:" << sampleRegion_ << endl
<< "mode_:" << sampleModeNames_[mode_] << endl
<< "samplePatch_:" << samplePatch_ << endl
<< "offsetMode_:" << offsetModeNames_[offsetMode_] << endl;
}
// Get global list of all samples and the processor and face they come from.
pointField samples;
labelList patchFaceProcs;
labelList patchFaces;
pointField patchFc;
collectSamples
(
patchPoints,
samples,
patchFaceProcs,
patchFaces,
patchFc
);
// Find processor and cell/face samples are in and actual location.
labelList sampleProcs;
labelList sampleIndices;
pointField sampleLocations;
findSamples(samples, sampleProcs, sampleIndices, sampleLocations);
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// Check for samples that were not found. This will only happen for
// NEARESTCELL since finds cell containing a location
if (mode_ == NEARESTCELL)
{
label nNotFound = 0;
forAll(sampleProcs, sampleI)
{
if (sampleProcs[sampleI] == -1)
{
nNotFound++;
}
}
reduce(nNotFound, sumOp<label>());
if (nNotFound > 0)
{
if (!hasWarned)
{
WarningIn
(
"mappedPatchBase::mappedPatchBase\n"
"(\n"
" const polyPatch& pp,\n"
" const word& sampleRegion,\n"
" const sampleMode mode,\n"
" const word& samplePatch,\n"
" const vector& offset\n"
")\n"
) << "Did not find " << nNotFound
<< " out of " << sampleProcs.size() << " total samples."
<< " Sampling these on owner cell centre instead." << endl
<< "On patch " << patch_.name()
<< " on region " << sampleRegion_
<< " in mode " << sampleModeNames_[mode_] << endl
<< "whilst sampling patch " << samplePatch_ << endl
<< " with offset mode " << offsetModeNames_[offsetMode_]
<< endl
<< "Suppressing further warnings from " << type() << endl;
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
hasWarned = true;
}
// Reset the samples that cannot be found to the cell centres.
pointField patchCc;
{
List<pointField> globalCc(Pstream::nProcs());
globalCc[Pstream::myProcNo()] = patch_.faceCellCentres();
Pstream::gatherList(globalCc);
Pstream::scatterList(globalCc);
patchCc = ListListOps::combine<pointField>
(
globalCc,
accessOp<pointField>()
);
}
forAll(sampleProcs, sampleI)
{
if (sampleProcs[sampleI] == -1)
{
// Reset to cell centres
samples[sampleI] = patchCc[sampleI];
}
}
// And re-search. Note: could be optimised to only search missing
// points.
findSamples(samples, sampleProcs, sampleIndices, sampleLocations);
}
}
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Now we have all the data we need:
// - where sample originates from (so destination when mapping):
// patchFaces, patchFaceProcs.
// - cell/face sample is in (so source when mapping)
// sampleIndices, sampleProcs.
//forAll(samples, i)
//{
// Info<< i << " need data in region "
// << patch_.boundaryMesh().mesh().name()
// << " for proc:" << patchFaceProcs[i]
// << " face:" << patchFaces[i]
// << " at:" << patchFc[i] << endl
// << "Found data in region " << sampleRegion_
// << " at proc:" << sampleProcs[i]
// << " face:" << sampleIndices[i]
// << " at:" << sampleLocations[i]
// << nl << endl;
//}
if (debug && Pstream::master())
{
OFstream str
(
patch_.boundaryMesh().mesh().time().path()
/ patch_.name()
+ "_mapped.obj"
);
Pout<< "Dumping mapping as lines from patch faceCentres to"
<< " sampled cell/faceCentres to file " << str.name() << endl;
label vertI = 0;
forAll(patchFc, i)
{
meshTools::writeOBJ(str, patchFc[i]);
vertI++;
meshTools::writeOBJ(str, sampleLocations[i]);
vertI++;
str << "l " << vertI-1 << ' ' << vertI << nl;
}
}
// Determine schedule.
mapPtr_.reset(new mapDistribute(sampleProcs, patchFaceProcs));
// Rework the schedule from indices into samples to cell data to send,
// face data to receive.
labelListList& subMap = mapPtr_().subMap();
labelListList& constructMap = mapPtr_().constructMap();
forAll(subMap, procI)
{
subMap[procI] = UIndirectList<label>
(
sampleIndices,
subMap[procI]
);
constructMap[procI] = UIndirectList<label>
(
patchFaces,
constructMap[procI]
);
//if (debug)
//{
// Pout<< "To proc:" << procI << " sending values of cells/faces:"
// << subMap[procI] << endl;
// Pout<< "From proc:" << procI
// << " receiving values of patch faces:"
// << constructMap[procI] << endl;
//}
}
// Redo constructSize
mapPtr_().constructSize() = patch_.size();
if (debug)
{
// Check that all elements get a value.
PackedBoolList used(patch_.size());
forAll(constructMap, procI)
{
const labelList& map = constructMap[procI];
forAll(map, i)
{
label faceI = map[i];
if (used[faceI] == 0)
{
used[faceI] = 1;
}
else
{
FatalErrorIn("mappedPatchBase::calcMapping() const")
<< "On patch " << patch_.name()
<< " patchface " << faceI
<< " is assigned to more than once."
<< abort(FatalError);
}
}
}
forAll(used, faceI)
{
if (used[faceI] == 0)
{
FatalErrorIn("mappedPatchBase::calcMapping() const")
<< "On patch " << patch_.name()
<< " patchface " << faceI
<< " is never assigned to."
<< abort(FatalError);
}
}
}
}
const Foam::autoPtr<Foam::searchableSurface>& Foam::mappedPatchBase::surfPtr()
const
{
const word surfType(surfDict_.lookupOrDefault<word>("type", "none"));
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
if (!surfPtr_.valid() && surfType != "none")
{
word surfName(surfDict_.lookupOrDefault("name", patch_.name()));
const polyMesh& mesh = patch_.boundaryMesh().mesh();
surfPtr_ =
searchableSurface::New
(
surfType,
IOobject
(
surfName,
mesh.time().constant(),
"triSurface",
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
surfDict_
);
}
return surfPtr_;
}
void Foam::mappedPatchBase::calcAMI() const
{
if (AMIPtr_.valid())
{
FatalErrorIn("mappedPatchBase::calcAMI() const")
<< "AMI already calculated" << exit(FatalError);
}
AMIPtr_.clear();
const polyPatch& nbr = samplePolyPatch();
// pointField nbrPoints(offsettedPoints());
pointField nbrPoints(nbr.localPoints());
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
if (debug)
{
OFstream os(patch_.name() + "_neighbourPatch-org.obj");
meshTools::writeOBJ(os, samplePolyPatch().localFaces(), nbrPoints);
}
// transform neighbour patch to local system
primitivePatch nbrPatch0
(
SubList<face>
(
nbr.localFaces(),
nbr.size()
),
nbrPoints
);
if (debug)
{
OFstream osN(patch_.name() + "_neighbourPatch-trans.obj");
meshTools::writeOBJ(osN, nbrPatch0, nbrPoints);
OFstream osO(patch_.name() + "_ownerPatch.obj");
meshTools::writeOBJ(osO, patch_.localFaces(), patch_.localPoints());
}
// Construct/apply AMI interpolation to determine addressing and weights
AMIPtr_.reset
(
new AMIPatchToPatchInterpolation
(
patch_,
faceAreaIntersect::tmMesh,
AMIReverse_
)
);
}
mattijs
committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// Hack to read old (List-based) format. See Field.C. The difference
// is only that in case of falling back to old format it expects a non-uniform
// list instead of a single vector.
Foam::tmp<Foam::pointField> Foam::mappedPatchBase::readListOrField
(
const word& keyword,
const dictionary& dict,
const label size
)
{
tmp<pointField> tfld(new pointField());
pointField& fld = tfld();
if (size)
{
ITstream& is = dict.lookup(keyword);
// Read first token
token firstToken(is);
if (firstToken.isWord())
{
if (firstToken.wordToken() == "uniform")
{
fld.setSize(size);
fld = pTraits<vector>(is);
}
else if (firstToken.wordToken() == "nonuniform")
{
is >> static_cast<List<vector>&>(fld);
if (fld.size() != size)
{
FatalIOErrorIn
(
"mappedPatchBase::readListOrField"
"(const word& keyword, const dictionary&, const label)",
dict
) << "size " << fld.size()
<< " is not equal to the given value of " << size
<< exit(FatalIOError);
}
}
else
{
FatalIOErrorIn
(
"mappedPatchBase::readListOrField"
"(const word& keyword, const dictionary&, const label)",
dict
) << "expected keyword 'uniform' or 'nonuniform', found "
<< firstToken.wordToken()
<< exit(FatalIOError);
}
}
else
{
if (is.version() == 2.0)
{
IOWarningIn
(
"mappedPatchBase::readListOrField"
"(const word& keyword, const dictionary&, const label)",
dict
) << "expected keyword 'uniform' or 'nonuniform', "
"assuming List format for backwards compatibility."
"Foam version 2.0." << endl;
is.putBack(firstToken);
is >> static_cast<List<vector>&>(fld);
}
}
}
return tfld;
}
// * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * * * * //
Foam::mappedPatchBase::mappedPatchBase
(
const polyPatch& pp
)
:
patch_(pp),
sampleRegion_(patch_.boundaryMesh().mesh().name()),
mode_(NEARESTPATCHFACE),
samplePatch_("none"),
offsetMode_(UNIFORM),
offset_(vector::zero),
offsets_(pp.size(), offset_),
distance_(0),
sameRegion_(sampleRegion_ == patch_.boundaryMesh().mesh().name()),
mapPtr_(NULL),
AMIPtr_(NULL),
AMIReverse_(false),
surfDict_(fileName("surface"))
{}
Foam::mappedPatchBase::mappedPatchBase
(
const polyPatch& pp,
const word& sampleRegion,
const sampleMode mode,
const word& samplePatch,
const vectorField& offsets
)
:
patch_(pp),
sampleRegion_(sampleRegion),
mode_(mode),
samplePatch_(samplePatch),
offsetMode_(NONUNIFORM),
offset_(vector::zero),
offsets_(offsets),
distance_(0),
sameRegion_(sampleRegion_ == patch_.boundaryMesh().mesh().name()),
mapPtr_(NULL),
AMIPtr_(NULL),
AMIReverse_(false),
surfDict_(fileName("surface"))
{}
Foam::mappedPatchBase::mappedPatchBase
(
const polyPatch& pp,
const word& sampleRegion,
const sampleMode mode,
const word& samplePatch,
const vector& offset
)
:
patch_(pp),
sampleRegion_(sampleRegion),
mode_(mode),
samplePatch_(samplePatch),
offsetMode_(UNIFORM),
offset_(offset),
offsets_(0),
distance_(0),
sameRegion_(sampleRegion_ == patch_.boundaryMesh().mesh().name()),
mapPtr_(NULL),
AMIPtr_(NULL),
AMIReverse_(false),
surfDict_(fileName("surface"))
{}
Foam::mappedPatchBase::mappedPatchBase
(
const polyPatch& pp,
const word& sampleRegion,
const sampleMode mode,
const word& samplePatch,
const scalar distance
)
:
patch_(pp),
sampleRegion_(sampleRegion),
mode_(mode),
samplePatch_(samplePatch),
offsetMode_(NORMAL),
offset_(vector::zero),
offsets_(0),
distance_(distance),
sameRegion_(sampleRegion_ == patch_.boundaryMesh().mesh().name()),
mapPtr_(NULL),
AMIPtr_(NULL),
AMIReverse_(false),
surfDict_(fileName("surface"))
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
{}
Foam::mappedPatchBase::mappedPatchBase
(
const polyPatch& pp,
const dictionary& dict
)
:
patch_(pp),
sampleRegion_
(
dict.lookupOrDefault
(
"sampleRegion",
patch_.boundaryMesh().mesh().name()
)
),
mode_(sampleModeNames_.read(dict.lookup("sampleMode"))),
samplePatch_(dict.lookup("samplePatch")),
offsetMode_(UNIFORM),
offset_(vector::zero),
offsets_(0),
distance_(0.0),
sameRegion_(sampleRegion_ == patch_.boundaryMesh().mesh().name()),
mapPtr_(NULL),
AMIPtr_(NULL),
AMIReverse_(dict.lookupOrDefault<bool>("flipNormals", false)),
surfPtr_(NULL),
surfDict_(dict.subOrEmptyDict("surface"))
{
if (dict.found("offsetMode"))
{
offsetMode_ = offsetModeNames_.read(dict.lookup("offsetMode"));
switch(offsetMode_)
{
case UNIFORM:
{
offset_ = point(dict.lookup("offset"));
}
break;
case NONUNIFORM:
{