Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\/ M anipulation | Copyright (C) 2016-2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
reconstructParMesh
Group
grpParallelUtilities
Chris Greenshields
committed
Reconstructs a mesh using geometric information only.
Writes point/face/cell procAddressing so afterwards reconstructPar can be
used to reconstruct fields.
- uses geometric matching tolerance (set with -mergeTol (at your option)
If the parallel case does not have correct procBoundaries use the
-fullMatch option which will check all boundary faces (bit slower).
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "timeSelector.H"
#include "IOobjectList.H"
#include "labelIOList.H"
#include "processorPolyPatch.H"
#include "mapAddedPolyMesh.H"
#include "polyMeshAdder.H"
#include "faceCoupleInfo.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "topoSet.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Tolerance (as fraction of the bounding box). Needs to be fairly lax since
// usually meshes get written with limited precision (6 digits)
static const scalar defaultMergeTol = 1e-7;
static void renumber
(
const labelList& map,
labelList& elems
)
{
forAll(elems, i)
{
if (elems[i] >= 0)
{
elems[i] = map[elems[i]];
}
}
}
// Determine which faces are coupled. Uses geometric merge distance.
// Looks either at all boundaryFaces (fullMatch) or only at the
// procBoundaries for proci. Assumes that masterMesh contains already merged
// all the processors < proci.
autoPtr<faceCoupleInfo> determineCoupledFaces
(
const bool fullMatch,
const label masterMeshProcStart,
const label masterMeshProcEnd,
const polyMesh& masterMesh,
const label meshToAddProcStart,
const label meshToAddProcEnd,
const polyMesh& meshToAdd,
const scalar mergeDist
)
{
if (fullMatch || masterMesh.nCells() == 0)
{
return autoPtr<faceCoupleInfo>::New
masterMesh,
meshToAdd,
mergeDist, // Absolute merging distance
true // Matching faces identical
);
}
else
{
// Pick up all patches on masterMesh ending in "toDDD" where DDD is
// the processor number proci.
const polyBoundaryMesh& masterPatches = masterMesh.boundaryMesh();
DynamicList<label> masterFaces
(
masterMesh.nFaces()
- masterMesh.nInternalFaces()
);
const polyPatch& pp = masterPatches[patchi];
if (isA<processorPolyPatch>(pp))
for
(
label proci=meshToAddProcStart;
proci<meshToAddProcEnd;
proci++
)
const string toProcString("to" + name(proci));
if (
pp.name().rfind(toProcString)
== (pp.name().size()-toProcString.size())
)
{
label meshFacei = pp.start();
forAll(pp, i)
{
masterFaces.append(meshFacei++);
}
break;
}
}
}
masterFaces.shrink();
// Pick up all patches on meshToAdd ending in "procBoundaryDDDtoYYY"
// where DDD is the processor number proci and YYY is < proci.
const polyBoundaryMesh& addPatches = meshToAdd.boundaryMesh();
DynamicList<label> addFaces
(
meshToAdd.nFaces()
- meshToAdd.nInternalFaces()
);
const polyPatch& pp = addPatches[patchi];
if (isA<processorPolyPatch>(pp))
{
bool isConnected = false;
for
(
label mergedProci=masterMeshProcStart;
!isConnected && (mergedProci < masterMeshProcEnd);
mergedProci++
)
label proci = meshToAddProcStart;
proci < meshToAddProcEnd;
proci++
)
const word fromProcString
(
processorPolyPatch::newName(proci, mergedProci)
);
if (pp.name() == fromProcString)
{
isConnected = true;
break;
}
}
}
if (isConnected)
{
label meshFacei = pp.start();
addFaces.append(meshFacei++);
}
}
}
}
addFaces.shrink();
return autoPtr<faceCoupleInfo>::New
masterMesh,
masterFaces,
meshToAdd,
addFaces,
mergeDist, // Absolute merging distance
true, // Matching faces identical?
false, // If perfect match are faces already ordered
// (e.g. processor patches)
false // are faces each on separate patch?
autoPtr<mapPolyMesh> mergeSharedPoints
(
const scalar mergeDist,
polyMesh& mesh,
labelListList& pointProcAddressing
)
{
// Find out which sets of points get merged and create a map from
// mesh point to unique point.
Map<label> pointToMaster
(
fvMeshAdder::findSharedPoints
(
mesh,
mergeDist
)
);
Info<< "mergeSharedPoints : detected " << pointToMaster.size()
<< " points that are to be merged." << endl;
if (returnReduce(pointToMaster.size(), sumOp<label>()) == 0)
{
}
polyTopoChange meshMod(mesh);
fvMeshAdder::mergePoints(mesh, pointToMaster, meshMod);
// Change the mesh (no inflation). Note: parallel comms allowed.
autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh, false, true);
// Update fields. No inflation, parallel sync.
// pointProcAddressing give indices into the master mesh so adapt them
// for changed point numbering.
// Adapt constructMaps for merged points.
forAll(pointProcAddressing, proci)
labelList& constructMap = pointProcAddressing[proci];
Henry Weller
committed
label oldPointi = constructMap[i];
Henry Weller
committed
label newPointi = map().reversePointMap()[oldPointi];
Henry Weller
committed
if (newPointi < -1)
Henry Weller
committed
constructMap[i] = -newPointi-2;
Henry Weller
committed
else if (newPointi >= 0)
Henry Weller
committed
constructMap[i] = newPointi;
FatalErrorInFunction
Henry Weller
committed
<< "Problem. oldPointi:" << oldPointi
<< " newPointi:" << newPointi << abort(FatalError);
return map;
boundBox procBounds
(
const argList& args,
const PtrList<Time>& databases,
const word& regionDir
)
{
boundBox bb = boundBox::invertedBox;
forAll(databases, proci)
{
fileName pointsInstance
(
databases[proci].findInstance
(
regionDir/polyMesh::meshSubDir,
"points"
)
);
if (pointsInstance != databases[proci].timeName())
FatalErrorInFunction
<< "Your time was specified as " << databases[proci].timeName()
<< " but there is no polyMesh/points in that time." << endl
<< "(there is a points file in " << pointsInstance
<< ")" << endl
<< "Please rerun with the correct time specified"
<< " (through the -constant, -time or -latestTime "
<< "(at your option)."
<< endl << exit(FatalError);
}
Info<< "Reading points from "
<< databases[proci].caseName()
<< " for time = " << databases[proci].timeName()
<< nl << endl;
pointIOField points
(
IOobject
(
"points",
databases[proci].findInstance
(
regionDir/polyMesh::meshSubDir,
"points"
),
regionDir/polyMesh::meshSubDir,
databases[proci],
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
);
bb.add(points);
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
}
return bb;
}
void writeCellDistance
(
Time& runTime,
const fvMesh& masterMesh,
const labelListList& cellProcAddressing
)
{
// Write the decomposition as labelList for use with 'manual'
// decomposition method.
labelIOList cellDecomposition
(
IOobject
(
"cellDecomposition",
masterMesh.facesInstance(),
masterMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
masterMesh.nCells()
);
forAll(cellProcAddressing, proci)
const labelList& pCells = cellProcAddressing[proci];
labelUIndList(cellDecomposition, pCells) = proci;
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
}
cellDecomposition.write();
Info<< nl << "Wrote decomposition to "
<< cellDecomposition.objectPath()
<< " for use in manual decomposition." << endl;
// Write as volScalarField for postprocessing. Change time to 0
// if was 'constant'
{
const scalar oldTime = runTime.value();
const label oldIndex = runTime.timeIndex();
if (runTime.timeName() == runTime.constant() && oldIndex == 0)
{
runTime.setTime(0, oldIndex+1);
}
volScalarField cellDist
(
IOobject
(
"cellDist",
runTime.timeName(),
masterMesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
masterMesh,
dimensionedScalar("cellDist", dimless, 0),
extrapolatedCalculatedFvPatchScalarField::typeName
forAll(cellDecomposition, celli)
cellDist[celli] = cellDecomposition[celli];
cellDist.correctBoundaryConditions();
cellDist.write();
Info<< nl << "Wrote decomposition as volScalarField to "
<< cellDist.name() << " for use in postprocessing."
<< endl;
// Restore time
runTime.setTime(oldTime, oldIndex);
}
}
int main(int argc, char *argv[])
{
argList::addNote
(
"reconstruct a mesh using geometric information only"
);
// Enable -constant ... if someone really wants it
Henry
committed
// Enable -withZero to prevent accidentally trashing the initial fields
timeSelector::addOptions(true, true);
argList::addOption
(
"mergeTol",
"scalar",
"specify the merge distance relative to the bounding box size "
);
argList::addBoolOption
(
"fullMatch",
"do (slower) geometric matching on all boundary faces"
);
argList::addBoolOption
(
"cellDist",
"write cell distribution as a labelList - for use with 'manual' "
"decomposition method or as a volScalarField for post-processing."
);
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
<< " individual processor" << nl
<< "meshes back into one master mesh. Use it if the original"
<< " master mesh has" << nl
<< "been deleted or if the processor meshes have been modified"
<< " (topology change)." << nl
<< "This tool will write the resulting mesh to a new time step"
<< " and construct" << nl
<< "xxxxProcAddressing files in the processor meshes so"
<< " reconstructPar can be" << nl
<< "used to regenerate the fields on the master mesh." << nl
<< nl
<< "Not well tested & use at your own risk!" << nl
<< endl;
word regionName = polyMesh::defaultRegion;
word regionDir = word::null;
args.readIfPresent("region", regionName)
&& regionName != polyMesh::defaultRegion
)
regionDir = regionName;
Info<< "Operating on region " << regionName << nl << endl;
}
scalar mergeTol = defaultMergeTol;
args.readIfPresent("mergeTol", mergeTol);
scalar writeTol = Foam::pow(10.0, -scalar(IOstream::defaultPrecision()));
<< "Write tolerance : " << writeTol << endl;
if (runTime.writeFormat() == IOstream::ASCII && mergeTol < writeTol)
{
FatalErrorInFunction
<< "Your current settings specify ASCII writing with "
<< IOstream::defaultPrecision() << " digits precision." << endl
<< "Your merging tolerance (" << mergeTol << ") is finer than this."
<< endl
<< "Please change your writeFormat to binary"
<< " or increase the writePrecision" << endl
<< "or adjust the merge tolerance (-mergeTol)."
<< exit(FatalError);
}
const bool fullMatch = args.found("fullMatch");
const bool writeCellDist = args.found("cellDist");
if (fullMatch)
{
Info<< "Doing geometric matching on all boundary faces." << nl << endl;
Info<< "Doing geometric matching on correct procBoundaries only."
<< nl << "This assumes a correct decomposition." << endl;
}
label nProcs = fileHandler().nProcs(args.path());
Info<< "Found " << nProcs << " processor directories" << nl << endl;
// Read all time databases
PtrList<Time> databases(nProcs);
forAll(databases, proci)
<< args.caseName()/fileName(word("processor") + name(proci))
<< endl;
databases.set
(
new Time
(
Time::controlDictName,
args.rootPath(),
args.caseName()/fileName(word("processor") + name(proci))
// Use the times list from the master processor
// and select a subset based on the command-line options
instantList timeDirs = timeSelector::select
(
databases[0].times(),
args
);
// Loop over all times
forAll(timeDirs, timeI)
// Set time for global database
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << nl << endl;
// Set time for all databases
forAll(databases, proci)
databases[proci].setTime(timeDirs[timeI], timeI);
IOobject facesIO
(
"faces",
databases[0].timeName(),
regionDir/polyMesh::meshSubDir,
databases[0],
IOobject::NO_READ,
IOobject::NO_WRITE
);
// Problem: faceCompactIOList recognises both 'faceList' and
// 'faceCompactList' so we should be lenient when doing
// typeHeaderOk
if (!facesIO.typeHeaderOk<faceCompactIOList>(false))
{
Info<< "No mesh." << nl << endl;
continue;
}
// Read point on individual processors to determine merge tolerance
// (otherwise single cell domains might give problems)
const boundBox bb = procBounds(args, databases, regionDir);
const scalar mergeDist = mergeTol*bb.mag();
Info<< "Overall mesh bounding box : " << bb << nl
<< "Relative tolerance : " << mergeTol << nl
<< "Absolute matching distance : " << mergeDist << nl
<< endl;
// Addressing from processor to reconstructed case
labelListList cellProcAddressing(nProcs);
labelListList faceProcAddressing(nProcs);
labelListList pointProcAddressing(nProcs);
labelListList boundaryProcAddressing(nProcs);
// Internal faces on the final reconstructed mesh
label masterInternalFaces;
// Owner addressing on the final reconstructed mesh
labelList masterOwner;
// Construct empty mesh.
// fvMesh** masterMesh = new fvMesh*[nProcs];
PtrList<fvMesh> masterMesh(nProcs);
for (label proci=0; proci<nProcs; proci++)
masterMesh.set
(
proci,
new fvMesh
(
IOobject
(
regionName,
runTime.timeName(),
runTime,
IOobject::NO_READ
),
xferCopy(pointField()),
xferCopy(faceList()),
xferCopy(cellList())
)
);
fvMesh meshToAdd
(
IOobject
(
regionName,
databases[proci].timeName(),
databases[proci]
)
);
// Initialize its addressing
cellProcAddressing[proci] = identity(meshToAdd.nCells());
faceProcAddressing[proci] = identity(meshToAdd.nFaces());
pointProcAddressing[proci] = identity(meshToAdd.nPoints());
boundaryProcAddressing[proci] =
identity(meshToAdd.boundaryMesh().size());
// Find geometrically shared points/faces.
autoPtr<faceCoupleInfo> couples = determineCoupledFaces
(
fullMatch,
proci,
masterMesh[proci],
proci,
proci,
meshToAdd,
mergeDist
);
// Add elements to mesh
autoPtr<mapAddedPolyMesh> map = fvMeshAdder::add
masterMesh[proci],
meshToAdd,
// Added processor
renumber(map().addedCellMap(), cellProcAddressing[proci]);
renumber(map().addedFaceMap(), faceProcAddressing[proci]);
renumber(map().addedPointMap(), pointProcAddressing[proci]);
renumber(map().addedPatchMap(), boundaryProcAddressing[proci]);
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
}
for (label step=2; step<nProcs*2; step*=2)
{
for (label proci=0; proci<nProcs; proci+=step)
{
label next = proci + step/2;
if(next >= nProcs)
{
continue;
}
Info<< "Merging mesh " << proci << " with " << next << endl;
// Find geometrically shared points/faces.
autoPtr<faceCoupleInfo> couples = determineCoupledFaces
(
fullMatch,
proci,
next,
masterMesh[proci],
next,
proci+step,
masterMesh[next],
mergeDist
);
// Add elements to mesh
autoPtr<mapAddedPolyMesh> map = fvMeshAdder::add
(
masterMesh[proci],
masterMesh[next],
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
// Processors that were already in masterMesh
for (label mergedI=proci; mergedI<next; mergedI++)
{
renumber
(
map().oldCellMap(),
cellProcAddressing[mergedI]
);
renumber
(
map().oldFaceMap(),
faceProcAddressing[mergedI]
);
renumber
(
map().oldPointMap(),
pointProcAddressing[mergedI]
);
// Note: boundary is special since can contain -1.
renumber
(
map().oldPatchMap(),
boundaryProcAddressing[mergedI]
);
}
// Added processor
for
(
label addedI=next;
addedI<min(proci+step, nProcs);
addedI++
)
{
renumber
(
map().addedCellMap(),
cellProcAddressing[addedI]
);
renumber
(
map().addedFaceMap(),
faceProcAddressing[addedI]
);
renumber
(
map().addedPointMap(),
pointProcAddressing[addedI]
);
renumber
(
map().addedPatchMap(),
boundaryProcAddressing[addedI]
);
}
masterMesh.set(next, nullptr);
}
}
for (label proci=0; proci<nProcs; proci++)
{
Info<< "Reading mesh to add from "
<< databases[proci].caseName()
<< " for time = " << databases[proci].timeName()
<< nl << nl << endl;
// See if any points on the mastermesh have become connected
// because of connections through processor meshes.
mergeSharedPoints(mergeDist, masterMesh[0], pointProcAddressing);
// Save some properties on the reconstructed mesh
masterInternalFaces = masterMesh[0].nInternalFaces();
masterOwner = masterMesh[0].faceOwner();
Info<< "\nWriting merged mesh to "
<< runTime.path()/runTime.timeName()
<< nl << endl;
if (!masterMesh[0].write())
FatalErrorInFunction
<< "Failed writing polyMesh."
<< exit(FatalError);
}
topoSet::removeFiles(masterMesh[0]);
if (writeCellDist)
{
writeCellDistance
(
runTime,
masterMesh[0],
cellProcAddressing
);
// Write the addressing
Info<< "Reconstructing the addressing from the processor meshes"
<< " to the newly reconstructed mesh" << nl << endl;
forAll(databases, proci)
Info<< "Reading processor " << proci << " mesh from "
<< databases[proci].caseName() << endl;
polyMesh procMesh
IOobject
(
regionName,
databases[proci].timeName(),
databases[proci]
)
);
// From processor point to reconstructed mesh point
Info<< "Writing pointProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList
IOobject
(
"pointProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
pointProcAddressing[proci]
).write();
// From processor face to reconstructed mesh face
Info<< "Writing faceProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList faceProcAddr
IOobject
(
"faceProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
faceProcAddressing[proci]
// Now add turning index to faceProcAddressing.
// See reconstructPar for meaning of turning index.
forAll(faceProcAddr, procFacei)
const label masterFacei = faceProcAddr[procFacei];
if
(
!procMesh.isInternalFace(procFacei)
&& masterFacei < masterInternalFaces
// proc face is now external but used to be internal face.
// Check if we have owner or neighbour.
label procOwn = procMesh.faceOwner()[procFacei];
label masterOwn = masterOwner[masterFacei];
if (cellProcAddressing[proci][procOwn] == masterOwn)
{
// No turning. Offset by 1.
faceProcAddr[procFacei]++;
}
else
{
// Turned face.
faceProcAddr[procFacei] =
-1 - faceProcAddr[procFacei];
// No turning. Offset by 1.
faceProcAddr[procFacei]++;
faceProcAddr.write();
// From processor cell to reconstructed mesh cell
Info<< "Writing cellProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList
IOobject
(
"cellProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
cellProcAddressing[proci]
).write();
// From processor patch to reconstructed mesh patch
Info<< "Writing boundaryProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList
IOobject
(
"boundaryProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
boundaryProcAddressing[proci]
).write();