Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "threePhaseInterfaceProperties.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "mathematicalConstants.H"
#include "surfaceInterpolate.H"
#include "fvcDiv.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
const Foam::scalar Foam::threePhaseInterfaceProperties::convertToRad =
Foam::constant::mathematical::pi/180.0;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::threePhaseInterfaceProperties::correctContactAngle
(
surfaceVectorField::GeometricBoundaryField& nHatb
) const
{
const volScalarField::GeometricBoundaryField& alpha1 =
mixture_.alpha1().boundaryField();
const volScalarField::GeometricBoundaryField& alpha2 =
mixture_.alpha2().boundaryField();
const volScalarField::GeometricBoundaryField& alpha3 =
mixture_.alpha3().boundaryField();
const volVectorField::GeometricBoundaryField& U =
mixture_.U().boundaryField();
const fvMesh& mesh = mixture_.U().mesh();
const fvBoundaryMesh& boundary = mesh.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(alpha1[patchi]))
{
const alphaContactAngleFvPatchScalarField& a2cap =
refCast<const alphaContactAngleFvPatchScalarField>
(alpha2[patchi]);
const alphaContactAngleFvPatchScalarField& a3cap =
refCast<const alphaContactAngleFvPatchScalarField>
(alpha3[patchi]);
scalarField twoPhaseAlpha2(max(a2cap, scalar(0)));
scalarField twoPhaseAlpha3(max(a3cap, scalar(0)));
scalarField sumTwoPhaseAlpha
(
twoPhaseAlpha2 + twoPhaseAlpha3 + SMALL
);
twoPhaseAlpha2 /= sumTwoPhaseAlpha;
twoPhaseAlpha3 /= sumTwoPhaseAlpha;
fvsPatchVectorField& nHatp = nHatb[patchi];
scalarField theta
(
twoPhaseAlpha2*(180 - a2cap.theta(U[patchi], nHatp))
+ twoPhaseAlpha3*(180 - a3cap.theta(U[patchi], nHatp))
vectorField nf(boundary[patchi].nf());
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatp & nf);
scalarField b1(cos(theta));
scalarField b2(nHatp.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatp = a*nf + b*nHatp;
nHatp /= (mag(nHatp) + deltaN_.value());
}
}
}
void Foam::threePhaseInterfaceProperties::calculateK()
{
const volScalarField& alpha1 = mixture_.alpha1();
const fvMesh& mesh = alpha1.mesh();
const surfaceVectorField& Sf = mesh.Sf();
// Cell gradient of alpha
volVectorField gradAlpha(fvc::grad(alpha1));
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf(fvc::interpolate(gradAlpha));
// Face unit interface normal
surfaceVectorField nHatfv(gradAlphaf/(mag(gradAlphaf) + deltaN_));
correctContactAngle(nHatfv.boundaryField());
// Face unit interface normal flux
nHatf_ = nHatfv & Sf;
// Simple expression for curvature
K_ = -fvc::div(nHatf_);
// Complex expression for curvature.
// Correction is formally zero but numerically non-zero.
// volVectorField nHat = gradAlpha/(mag(gradAlpha) + deltaN_);
// nHat.boundaryField() = nHatfv.boundaryField();
// K_ = -fvc::div(nHatf_) + (nHat & fvc::grad(nHatfv) & nHat);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::threePhaseInterfaceProperties::threePhaseInterfaceProperties
(
const incompressibleThreePhaseMixture& mixture
)
:
mixture_(mixture),
cAlpha_
(
readScalar
(
mixture.U().mesh().solverDict
(
mixture_.alpha1().name()
).lookup("cAlpha")
)
),
sigma12_(mixture.lookup("sigma12")),
sigma13_(mixture.lookup("sigma13")),
deltaN_
(
"deltaN",
1e-8/pow(average(mixture.U().mesh().V()), 1.0/3.0)
),
nHatf_
(
IOobject
"nHatf",
mixture.alpha1().time().timeName(),
mixture.alpha1().mesh()
),
mixture.alpha1().mesh(),
dimensionedScalar("nHatf", dimArea, 0.0)
),
K_
(
IOobject
(
"interfaceProperties:K",
mixture.alpha1().time().timeName(),
mixture.alpha1().mesh()
),
mixture.alpha1().mesh(),
dimensionedScalar("K", dimless/dimLength, 0.0)
)
{
calculateK();
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::surfaceScalarField>
Foam::threePhaseInterfaceProperties::surfaceTensionForce() const
{
return fvc::interpolate(sigmaK())*fvc::snGrad(mixture_.alpha1());
}
Foam::tmp<Foam::volScalarField>
Foam::threePhaseInterfaceProperties::nearInterface() const
{
return max
(
pos(mixture_.alpha1() - 0.01)*pos(0.99 - mixture_.alpha1()),
pos(mixture_.alpha2() - 0.01)*pos(0.99 - mixture_.alpha2())
);
}
// ************************************************************************* //