Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Chris Greenshields
committed
Splits mesh into multiple regions.
Each region is defined as a domain whose cells can all be reached by
cell-face-cell walking without crossing
- boundary faces
- additional faces from faceset (-blockedFaces faceSet).
- any face inbetween differing cellZones (-cellZones)
Output is:
- volScalarField with regions as different scalars (-detectOnly)
or
- mesh with multiple regions and mapped patches. These patches
either cover the whole interface between two region (default) or
only part according to faceZones (-useFaceZones)
or
- mesh with cells put into cellZones (-makeCellZones)
- cellZonesOnly does not do a walk and uses the cellZones only. Use
this if you don't mind having disconnected domains in a single region.
This option requires all cells to be in one (and one only) cellZone.
- cellZonesFileOnly behaves like -cellZonesOnly but reads the cellZones
from the specified file. This allows one to explicitly specify the region
distribution and still have multiple cellZones per region.
- useCellZonesOnly does not do a walk and uses the cellZones only. Use
this if you don't mind having disconnected domains in a single region.
This option requires all cells to be in one (and one only) cellZone.
- prefixRegion prefixes all normal patches with region name (interface
(patches already have region name prefix)
- Should work in parallel.
cellZones can differ on either side of processor boundaries in which case
the faces get moved from processor patch to directMapped patch. Not
the faces get moved from processor patch to mapped patch. Not
very well tested.
- If a cell zone gets split into more than one region it can detect
the largest matching region (-sloppyCellZones). This will accept any
region that covers more than 50% of the zone. It has to be a subset
so cannot have any cells in any other zone.
mattijs
committed
- If explicitly a single region has been selected (-largestOnly or
-insidePoint) its region name will be either
- name of a cellZone it matches to or
- "largestOnly" respectively "insidePoint" or
- polyMesh::defaultRegion if additionally -overwrite
(so it will overwrite the input mesh!)
- writes maps like decomposePar back to original mesh:
- pointRegionAddressing : for every point in this region the point in
the original mesh
- cellRegionAddressing : ,, cell ,, cell ,,
- faceRegionAddressing : ,, face ,, face in
the original mesh + 'turning index'. For a face in the same orientation
this is the original facelabel+1, for a turned face this is -facelabel-1
- boundaryRegionAddressing : for every patch in this region the
patch in the original mesh (or -1 if added patch)
\*---------------------------------------------------------------------------*/
#include "SortableList.H"
#include "argList.H"
#include "regionSplit.H"
#include "fvMeshSubset.H"
#include "IOobjectList.H"
#include "volFields.H"
#include "faceSet.H"
#include "cellSet.H"
#include "polyTopoChange.H"
#include "removeCells.H"
#include "EdgeMap.H"
#include "syncTools.H"
#include "ReadFields.H"
#include "mappedWallPolyPatch.H"
#include "fvMeshTools.H"
#include "zeroGradientFvPatchFields.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Prepend prefix to selected patches.
void renamePatches
(
fvMesh& mesh,
const word& prefix,
const labelList& patchesToRename
)
{
polyBoundaryMesh& polyPatches =
const_cast<polyBoundaryMesh&>(mesh.boundaryMesh());
forAll(patchesToRename, i)
{
label patchi = patchesToRename[i];
polyPatch& pp = polyPatches[patchi];
if (isA<coupledPolyPatch>(pp))
{
WarningInFunction
<< "Encountered coupled patch " << pp.name()
<< ". Will only rename the patch itself,"
<< " not any referred patches."
<< " This might have to be done by hand."
<< endl;
}
pp.name() = prefix + '_' + pp.name();
}
// Recalculate any demand driven data (e.g. group to name lookup)
polyPatches.updateMesh();
}
template<class GeoField>
void subsetVolFields
(
const fvMesh& mesh,
const fvMesh& subMesh,
const labelList& cellMap,
const labelList& faceMap,
const labelHashSet& addedPatches
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
)
{
const labelList patchMap(identity(mesh.boundaryMesh().size()));
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
forAllConstIter(typename HashTable<const GeoField*>, fields, iter)
{
const GeoField& fld = *iter();
Info<< "Mapping field " << fld.name() << endl;
tmp<GeoField> tSubFld
(
fvMeshSubset::interpolate
(
fld,
subMesh,
patchMap,
cellMap,
faceMap
)
);
// Hack: set value to 0 for introduced patches (since don't
// get initialised.
forAll(tSubFld().boundaryField(), patchi)
tSubFld.ref().boundaryFieldRef()[patchi] ==
Henry Weller
committed
typename GeoField::value_type(Zero);
}
}
// Store on subMesh
GeoField* subFld = tSubFld.ptr();
subFld->rename(fld.name());
subFld->writeOpt() = IOobject::AUTO_WRITE;
subFld->store();
}
}
template<class GeoField>
void subsetSurfaceFields
(
const fvMesh& mesh,
const fvMesh& subMesh,
const labelList& faceMap,
const labelHashSet& addedPatches
)
{
const labelList patchMap(identity(mesh.boundaryMesh().size()));
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
forAllConstIter(typename HashTable<const GeoField*>, fields, iter)
{
const GeoField& fld = *iter();
Info<< "Mapping field " << fld.name() << endl;
tmp<GeoField> tSubFld
(
fvMeshSubset::interpolate
(
fld,
subMesh,
patchMap,
faceMap
)
);
// Hack: set value to 0 for introduced patches (since don't
// get initialised.
forAll(tSubFld().boundaryField(), patchi)
tSubFld.ref().boundaryFieldRef()[patchi] ==
Henry Weller
committed
typename GeoField::value_type(Zero);
}
}
// Store on subMesh
GeoField* subFld = tSubFld.ptr();
subFld->rename(fld.name());
subFld->writeOpt() = IOobject::AUTO_WRITE;
subFld->store();
}
}
// Select all cells not in the region
labelList getNonRegionCells(const labelList& cellRegion, const label regionI)
{
DynamicList<label> nonRegionCells(cellRegion.size());
forAll(cellRegion, celli)
if (cellRegion[celli] != regionI)
nonRegionCells.append(celli);
}
}
return nonRegionCells.shrink();
}
void addToInterface
(
const polyMesh& mesh,
const label zoneID,
const label ownRegion,
const label neiRegion,
Henry Weller
committed
EdgeMap<Map<label>>& regionsToSize
)
{
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
Henry Weller
committed
EdgeMap<Map<label>>::iterator iter = regionsToSize.find
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
(
interface
);
if (iter != regionsToSize.end())
{
// Check if zone present
Map<label>::iterator zoneFnd = iter().find(zoneID);
if (zoneFnd != iter().end())
{
// Found zone. Increment count.
zoneFnd()++;
}
else
{
// New or no zone. Insert with count 1.
iter().insert(zoneID, 1);
}
}
else
{
// Create new interface of size 1.
Map<label> zoneToSize;
zoneToSize.insert(zoneID, 1);
regionsToSize.insert(interface, zoneToSize);
}
}
// Get region-region interface name and sizes.
// Returns interfaces as straight list for looping in identical order.
void getInterfaceSizes
(
const polyMesh& mesh,
const bool useFaceZones,
const labelList& cellRegion,
const wordList& regionNames,
Henry Weller
committed
List<Pair<word>>& interfaceNames,
labelList& interfaceSizes,
labelList& faceToInterface
// From region-region to faceZone (or -1) to number of faces.
Henry Weller
committed
EdgeMap<Map<label>> regionsToSize;
// Internal faces
// ~~~~~~~~~~~~~~
forAll(mesh.faceNeighbour(), facei)
label ownRegion = cellRegion[mesh.faceOwner()[facei]];
label neiRegion = cellRegion[mesh.faceNeighbour()[facei]];
if (ownRegion != neiRegion)
{
addToInterface
mesh,
(useFaceZones ? mesh.faceZones().whichZone(facei) : -1),
ownRegion,
neiRegion,
regionsToSize
// Boundary faces
// ~~~~~~~~~~~~~~
// Neighbour cellRegion.
labelList coupledRegion(mesh.nFaces()-mesh.nInternalFaces());
forAll(coupledRegion, i)
{
label celli = mesh.faceOwner()[i+mesh.nInternalFaces()];
coupledRegion[i] = cellRegion[celli];
syncTools::swapBoundaryFaceList(mesh, coupledRegion);
forAll(coupledRegion, i)
{
label facei = i+mesh.nInternalFaces();
label ownRegion = cellRegion[mesh.faceOwner()[facei]];
label neiRegion = coupledRegion[i];
if (ownRegion != neiRegion)
{
addToInterface
mesh,
(useFaceZones ? mesh.faceZones().whichZone(facei) : -1),
ownRegion,
neiRegion,
regionsToSize
if (Pstream::parRun())
{
if (Pstream::master())
{
// Receive and add to my sizes
for
(
int slave=Pstream::firstSlave();
slave<=Pstream::lastSlave();
slave++
)
{
IPstream fromSlave(Pstream::commsTypes::blocking, slave);
Henry Weller
committed
EdgeMap<Map<label>> slaveSizes(fromSlave);
Henry Weller
committed
forAllConstIter(EdgeMap<Map<label>>, slaveSizes, slaveIter)
Henry Weller
committed
EdgeMap<Map<label>>::iterator masterIter =
regionsToSize.find(slaveIter.key());
if (masterIter != regionsToSize.end())
// Same inter-region
const Map<label>& slaveInfo = slaveIter();
Map<label>& masterInfo = masterIter();
forAllConstIter(Map<label>, slaveInfo, iter)
{
label zoneID = iter.key();
label slaveSize = iter();
Map<label>::iterator zoneFnd = masterInfo.find
(
zoneID
);
if (zoneFnd != masterInfo.end())
{
zoneFnd() += slaveSize;
}
else
{
masterInfo.insert(zoneID, slaveSize);
}
}
regionsToSize.insert(slaveIter.key(), slaveIter());
}
}
}
}
else
{
// Send to master
{
OPstream toMaster
(
Pstream::commsTypes::blocking,
Pstream::masterNo()
);
toMaster << regionsToSize;
}
}
Pstream::scatter(regionsToSize);
// Now we have the global sizes of all inter-regions.
// Invert this on master and distribute.
label nInterfaces = 0;
Henry Weller
committed
forAllConstIter(EdgeMap<Map<label>>, regionsToSize, iter)
{
const Map<label>& info = iter();
nInterfaces += info.size();
}
interfaces.setSize(nInterfaces);
interfaceNames.setSize(nInterfaces);
interfaceSizes.setSize(nInterfaces);
Henry Weller
committed
EdgeMap<Map<label>> regionsToInterface(nInterfaces);
nInterfaces = 0;
Henry Weller
committed
forAllConstIter(EdgeMap<Map<label>>, regionsToSize, iter)
{
const edge& e = iter.key();
const word& name0 = regionNames[e[0]];
const word& name1 = regionNames[e[1]];
const Map<label>& info = iter();
forAllConstIter(Map<label>, info, infoIter)
{
interfaces[nInterfaces] = iter.key();
label zoneID = infoIter.key();
if (zoneID == -1)
interfaceNames[nInterfaces] = Pair<word>
(
name0 + "_to_" + name1,
name1 + "_to_" + name0
);
else
{
const word& zoneName = mesh.faceZones()[zoneID].name();
interfaceNames[nInterfaces] = Pair<word>
(
zoneName + "_" + name0 + "_to_" + name1,
zoneName + "_" + name1 + "_to_" + name0
);
}
interfaceSizes[nInterfaces] = infoIter();
if (regionsToInterface.found(e))
{
regionsToInterface[e].insert(zoneID, nInterfaces);
}
else
{
Map<label> zoneAndInterface;
zoneAndInterface.insert(zoneID, nInterfaces);
regionsToInterface.insert(e, zoneAndInterface);
}
nInterfaces++;
// Now all processor have consistent interface information
Pstream::scatter(interfaces);
Pstream::scatter(interfaceNames);
Pstream::scatter(interfaceSizes);
Pstream::scatter(regionsToInterface);
// Mark all inter-region faces.
faceToInterface.setSize(mesh.nFaces(), -1);
forAll(mesh.faceNeighbour(), facei)
label ownRegion = cellRegion[mesh.faceOwner()[facei]];
label neiRegion = cellRegion[mesh.faceNeighbour()[facei]];
if (ownRegion != neiRegion)
{
label zoneID = -1;
if (useFaceZones)
{
zoneID = mesh.faceZones().whichZone(facei);
}
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
faceToInterface[facei] = regionsToInterface[interface][zoneID];
}
}
forAll(coupledRegion, i)
{
label facei = i+mesh.nInternalFaces();
label ownRegion = cellRegion[mesh.faceOwner()[facei]];
label neiRegion = coupledRegion[i];
if (ownRegion != neiRegion)
{
label zoneID = -1;
if (useFaceZones)
{
zoneID = mesh.faceZones().whichZone(facei);
}
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
faceToInterface[facei] = regionsToInterface[interface][zoneID];
}
}
// Create mesh for region.
autoPtr<mapPolyMesh> createRegionMesh
(
const fvMesh& mesh,
// Region info
const labelList& cellRegion,
const label regionI,
const word& regionName,
// Interface info
const labelList& interfacePatches,
const labelList& faceToInterface,
autoPtr<fvMesh>& newMesh
)
{
// Create dummy system/fv*
{
IOobject io
(
"fvSchemes",
mesh.time().system(),
regionName,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
);
Info<< "Testing:" << io.objectPath() << endl;
if (!io.headerOk())
{
Info<< "Writing dummy " << regionName/io.name() << endl;
dictionary dummyDict;
dictionary divDict;
dummyDict.add("divSchemes", divDict);
dictionary gradDict;
dummyDict.add("gradSchemes", gradDict);
dictionary laplDict;
dummyDict.add("laplacianSchemes", laplDict);
IOdictionary(io, dummyDict).regIOobject::write();
}
}
{
IOobject io
(
"fvSolution",
mesh.time().system(),
regionName,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
);
if (!io.headerOk())
//if (!exists(io.objectPath()))
{
Info<< "Writing dummy " << regionName/io.name() << endl;
dictionary dummyDict;
IOdictionary(io, dummyDict).regIOobject::write();
}
}
// Neighbour cellRegion.
labelList coupledRegion(mesh.nFaces()-mesh.nInternalFaces());
forAll(coupledRegion, i)
{
label celli = mesh.faceOwner()[i+mesh.nInternalFaces()];
coupledRegion[i] = cellRegion[celli];
syncTools::swapBoundaryFaceList(mesh, coupledRegion);
// Topology change container. Start off from existing mesh.
polyTopoChange meshMod(mesh);
// Cell remover engine
removeCells cellRemover(mesh);
// Select all but region cells
labelList cellsToRemove(getNonRegionCells(cellRegion, regionI));
// Find out which faces will get exposed. Note that this
// gets faces in mesh face order. So both regions will get same
// face in same order (important!)
labelList exposedFaces = cellRemover.getExposedFaces(cellsToRemove);
labelList exposedPatchIDs(exposedFaces.size());
forAll(exposedFaces, i)
{
label facei = exposedFaces[i];
label interfacei = faceToInterface[facei];
label ownRegion = cellRegion[mesh.faceOwner()[facei]];
if (mesh.isInternalFace(facei))
neiRegion = cellRegion[mesh.faceNeighbour()[facei]];
neiRegion = coupledRegion[facei-mesh.nInternalFaces()];
// Check which side is being kept - determines which of the two
// patches will be used.
label otherRegion = -1;
if (ownRegion == regionI && neiRegion != regionI)
{
otherRegion = neiRegion;
}
else if (ownRegion != regionI && neiRegion == regionI)
{
otherRegion = ownRegion;
}
else
{
FatalErrorInFunction
<< "Exposed face:" << facei
<< " fc:" << mesh.faceCentres()[facei]
<< " has owner region " << ownRegion
<< " and neighbour region " << neiRegion
<< " when handling region:" << regionI
<< exit(FatalError);
}
// Find the patch.
if (regionI < otherRegion)
exposedPatchIDs[i] = interfacePatches[interfacei];
}
else
{
exposedPatchIDs[i] = interfacePatches[interfacei]+1;
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
}
// Remove faces
cellRemover.setRefinement
(
cellsToRemove,
exposedFaces,
exposedPatchIDs,
meshMod
);
autoPtr<mapPolyMesh> map = meshMod.makeMesh
(
newMesh,
IOobject
(
regionName,
mesh.time().timeName(),
mesh.time(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh
);
return map;
}
void createAndWriteRegion
(
const fvMesh& mesh,
const labelList& cellRegion,
const wordList& regionNames,
const bool prefixRegion,
const labelList& faceToInterface,
const labelList& interfacePatches,
)
{
Info<< "Creating mesh for region " << regionI
<< ' ' << regionNames[regionI] << endl;
autoPtr<fvMesh> newMesh;
autoPtr<mapPolyMesh> map = createRegionMesh
(
mesh,
cellRegion,
regionI,
regionNames[regionI],
interfacePatches,
faceToInterface,
labelHashSet addedPatches(2*interfacePatches.size());
forAll(interfacePatches, interfacei)
addedPatches.insert(interfacePatches[interfacei]);
addedPatches.insert(interfacePatches[interfacei]+1);
Info<< "Mapping fields" << endl;
// Map existing fields
newMesh().updateMesh(map());
// Add subsetted fields
subsetVolFields<volScalarField>
(
mesh,
newMesh(),
map().cellMap(),
);
subsetVolFields<volVectorField>
(
mesh,
newMesh(),
map().cellMap(),
);
subsetVolFields<volSphericalTensorField>
(
mesh,
newMesh(),
map().cellMap(),
);
subsetVolFields<volSymmTensorField>
(
mesh,
newMesh(),
map().cellMap(),
);
subsetVolFields<volTensorField>
(
mesh,
newMesh(),
map().cellMap(),
);
subsetSurfaceFields<surfaceScalarField>
(
mesh,
newMesh(),
);
subsetSurfaceFields<surfaceVectorField>
(
mesh,
newMesh(),
);
subsetSurfaceFields<surfaceSphericalTensorField>
(
mesh,
newMesh(),
);
subsetSurfaceFields<surfaceSymmTensorField>
(
mesh,
newMesh(),
);
subsetSurfaceFields<surfaceTensorField>
(
mesh,
newMesh(),
);
const polyBoundaryMesh& newPatches = newMesh().boundaryMesh();
// Delete empty patches
// ~~~~~~~~~~~~~~~~~~~~
// Create reordering list to move patches-to-be-deleted to end
labelList oldToNew(newPatches.size(), -1);
DynamicList<label> sharedPatches(newPatches.size());
label newI = 0;
Info<< "Deleting empty patches" << endl;
// Assumes all non-proc boundaries are on all processors!
const polyPatch& pp = newPatches[patchi];
oldToNew[patchi] = newI;
if (!addedPatches.found(patchi))
{
sharedPatches.append(newI);
}
newI++;
}
}
// Same for processor patches (but need no reduction)
const polyPatch& pp = newPatches[patchi];
if (isA<processorPolyPatch>(pp) && pp.size())
}
}
const label nNewPatches = newI;
// Move all deleteable patches to the end
//reorderPatches(newMesh(), oldToNew, nNewPatches);
fvMeshTools::reorderPatches(newMesh(), oldToNew, nNewPatches, true);
// Rename shared patches with region name
if (prefixRegion)
{
Info<< "Prefixing patches with region name" << endl;
renamePatches(newMesh(), regionNames[regionI], sharedPatches);
}
Info<< "Writing new mesh" << endl;
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
newMesh().write();
// Write addressing files like decomposePar
Info<< "Writing addressing to base mesh" << endl;
labelIOList pointProcAddressing
(
IOobject
(
"pointRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map().pointMap()
);
Info<< "Writing map " << pointProcAddressing.name()
<< " from region" << regionI
<< " points back to base mesh." << endl;
pointProcAddressing.write();
labelIOList faceProcAddressing
(
IOobject
(
"faceRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
newMesh().nFaces()
);
forAll(faceProcAddressing, facei)
{
// face + turning index. (see decomposePar)
// Is the face pointing in the same direction?
label oldFacei = map().faceMap()[facei];
map().cellMap()[newMesh().faceOwner()[facei]]
== mesh.faceOwner()[oldFacei]
faceProcAddressing[facei] = oldFacei+1;
faceProcAddressing[facei] = -(oldFacei+1);