Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "face.H"
#include "pointHit.H"
#include "triPointRef.H"
#include "line.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
(
const point& p,
const vector& n,
const UList<point>& meshPoints,
const intersection::algorithm alg,
const intersection::direction dir
) const
{
Henry Weller
committed
// Return potential intersection with face with a ray starting
// at p, direction n (does not need to be normalized)
// Does face-center decomposition and returns triangle intersection
// point closest to p.
// In case of miss the point is the nearest point intersection of the
// face plane and the ray and the distance is the distance between the
// intersection point and the nearest point on the face
Mark Olesen
committed
// If the face is a triangle, do a direct calculation
if (size() == 3)
{
return triPointRef
(
meshPoints[operator[](0)],
meshPoints[operator[](1)],
meshPoints[operator[](2)]
).ray(p, n, alg, dir);
}
point ctr = Foam::average(points(meshPoints));
scalar nearestHitDist = GREAT;
scalar nearestMissDist = GREAT;
bool eligible = false;
// Initialize to miss, distance = GREAT
pointHit nearest(p);
const labelList& f = *this;
const label nPoints = size();
point nextPoint = ctr;
for (label pI = 0; pI < nPoints; pI++)
{
nextPoint = meshPoints[f[fcIndex(pI)]];
// Note: for best accuracy, centre point always comes last
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
pointHit curHit = triPointRef
(
meshPoints[f[pI]],
nextPoint,
ctr
).ray(p, n, alg, dir);
if (curHit.hit())
{
if (Foam::mag(curHit.distance()) < Foam::mag(nearestHitDist))
{
nearestHitDist = curHit.distance();
nearest.setHit();
nearest.setPoint(curHit.hitPoint());
}
}
else if (!nearest.hit())
{
// Miss and no hit yet. Update miss statistics.
if (curHit.eligibleMiss())
{
eligible = true;
// Miss distance is the distance between the plane intersection
// point and the nearest point of the triangle
scalar missDist =
Foam::mag
(
p + curHit.distance()*n
- curHit.missPoint()
);
if (missDist < nearestMissDist)
{
nearestMissDist = missDist;
nearest.setDistance(curHit.distance());
nearest.setPoint(curHit.missPoint());
}
}
}
}
if (nearest.hit())
{
nearest.setDistance(nearestHitDist);
}
else
{
// Haven't hit a single face triangle
nearest.setMiss(eligible);
}
return nearest;
}
Foam::pointHit Foam::face::intersection
(
const point& p,
const vector& q,
const point& ctr,
const UList<point>& meshPoints,
const intersection::algorithm alg,
const scalar tol
Mark Olesen
committed
// If the face is a triangle, do a direct calculation
if (size() == 3)
{
return triPointRef
(
meshPoints[operator[](0)],
meshPoints[operator[](1)],
meshPoints[operator[](2)]
).intersection(p, q, alg, tol);
}
scalar nearestHitDist = VGREAT;
// Initialize to miss, distance = GREAT
pointHit nearest(p);
const labelList& f = *this;
forAll(f, pI)
{
// Note: for best accuracy, centre point always comes last
pointHit curHit = triPointRef
(
meshPoints[f[pI]],
meshPoints[f[fcIndex(pI)]],
ctr
).intersection(p, q, alg, tol);
if (Foam::mag(curHit.distance()) < Foam::mag(nearestHitDist))
nearestHitDist = curHit.distance();
nearest.setHit();
nearest.setPoint(curHit.hitPoint());
}
}
}
if (nearest.hit())
{
nearest.setDistance(nearestHitDist);
}
return nearest;
}
Foam::pointHit Foam::face::nearestPoint
const UList<point>& meshPoints
{
// Dummy labels
label nearType = -1;
label nearLabel = -1;
return nearestPointClassify(p, meshPoints, nearType, nearLabel);
}
Foam::pointHit Foam::face::nearestPointClassify
(
const point& p,
const UList<point>& meshPoints,
label& nearType,
label& nearLabel
) const
Mark Olesen
committed
// If the face is a triangle, do a direct calculation
if (size() == 3)
{
return triPointRef
(
meshPoints[operator[](0)],
meshPoints[operator[](1)],
meshPoints[operator[](2)]
).nearestPointClassify(p, nearType, nearLabel);
}
const face& f = *this;
point ctr = centre(meshPoints);
// Initialize to miss, distance=GREAT
pointHit nearest(p);
nearType = -1;
nearLabel = -1;
const label nPoints = f.size();
point nextPoint = ctr;
for (label pI = 0; pI < nPoints; pI++)
{
nextPoint = meshPoints[f[fcIndex(pI)]];
label tmpNearType = -1;
label tmpNearLabel = -1;
// Note: for best accuracy, centre point always comes last
triPointRef tri
(
meshPoints[f[pI]],
nextPoint,
ctr
);
pointHit curHit = tri.nearestPointClassify
(
p,
tmpNearType,
tmpNearLabel
);
if (Foam::mag(curHit.distance()) < Foam::mag(nearest.distance()))
{
nearest.setDistance(curHit.distance());
// Assume at first that the near type is NONE on the
// triangle (i.e. on the face of the triangle) then it is
// therefore also for the face.
nearType = NONE;
if (tmpNearType == triPointRef::EDGE && tmpNearLabel == 0)
{
// If the triangle edge label is 0, then this is also
// an edge of the face, if not, it is on the face
nearType = EDGE;
nearLabel = pI;
}
else if (tmpNearType == triPointRef::POINT && tmpNearLabel < 2)
{
// If the triangle point label is 0 or 1, then this is
// also a point of the face, if not, it is on the face
nearType = POINT;
nearLabel = pI + tmpNearLabel;
}
if (curHit.hit())
{
nearest.setHit();
nearest.setPoint(curHit.hitPoint());
}
else
{
// In nearest point, miss is always eligible
nearest.setMiss(true);
nearest.setPoint(curHit.missPoint());
}
}
}
return nearest;
}
int Foam::face::sign
(
const point& p,
const UList<point>& points,
const scalar tol
) const
{
// Take three points [0, 1/3, 2/3] from the face
// - assumes the face is not severely warped
return triPointRef
(
points[operator[](0)],
points[operator[](size()/3)],
points[operator[]((2*size())/3)]
).sign(p, tol);
}
// ************************************************************************* //