Newer
Older
#include "writeFields.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "polyMeshTools.H"
#include "zeroGradientFvPatchFields.H"
#include "syncTools.H"
#include "cellAspectRatio.H"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
using namespace Foam;
void maxFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = -GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = max(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
void minFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = min(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
void minFaceToCell
(
const surfaceScalarField& faceData,
volScalarField& cellData,
const bool correctBoundaryConditions
)
{
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
const labelUList& own = cellData.mesh().owner();
const labelUList& nei = cellData.mesh().neighbour();
// Internal faces
forAll(own, facei)
{
cellFld[own[facei]] = min(cellFld[own[facei]], faceData[facei]);
cellFld[nei[facei]] = min(cellFld[nei[facei]], faceData[facei]);
}
// Patch faces
forAll(faceData.boundaryField(), patchi)
{
const fvsPatchScalarField& fvp = faceData.boundaryField()[patchi];
const labelUList& fc = fvp.patch().faceCells();
forAll(fc, i)
{
cellFld[fc[i]] = min(cellFld[fc[i]], fvp[i]);
}
}
volScalarField::Boundary& bfld = cellData.boundaryFieldRef();
forAll(bfld, patchi)
{
bfld[patchi] = faceData.boundaryField()[patchi];
}
if (correctBoundaryConditions)
{
cellData.correctBoundaryConditions();
}
}
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
void writeSurfaceField
(
const fvMesh& mesh,
const fileName& fName,
const scalarField& faceData
)
{
// Write single surfaceScalarField
surfaceScalarField fld
(
IOobject
(
fName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
calculatedFvsPatchScalarField::typeName
);
fld.primitiveFieldRef() = faceData;
//fld.correctBoundaryConditions();
Info<< " Writing face data to " << fName << endl;
fld.write();
}
void Foam::writeFields
(
const fvMesh& mesh,
const wordHashSet& selectedFields,
const bool writeFaceFields
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
)
{
if (selectedFields.empty())
{
return;
}
Info<< "Writing fields with mesh quality parameters" << endl;
if (selectedFields.found("nonOrthoAngle"))
{
//- Face based orthogonality
const scalarField faceOrthogonality
(
polyMeshTools::faceOrthogonality
(
mesh,
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Face based angle
const scalarField nonOrthoAngle
(
radToDeg
(
Foam::acos(min(scalar(1), max(scalar(-1), faceOrthogonality)))
)
);
//- Cell field - max of either face
volScalarField cellNonOrthoAngle
(
IOobject
(
"nonOrthoAngle",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(nonOrthoAngle, cellNonOrthoAngle);
Info<< " Writing non-orthogonality (angle) to "
<< cellNonOrthoAngle.name() << endl;
cellNonOrthoAngle.write();
if (writeFaceFields)
{
writeSurfaceField
(
mesh,
"face_nonOrthoAngle",
SubField<scalar>(nonOrthoAngle, mesh.nInternalFaces())
);
}
}
if (selectedFields.found("faceWeight"))
{
volScalarField cellWeights
(
IOobject
(
"faceWeight",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
wordList // wanted bc types
(
mesh.boundary().size(),
calculatedFvPatchScalarField::typeName
),
mesh.weights().boundaryField().types() // current bc types
);
//- Take min
minFaceToCell(mesh.weights(), cellWeights, false);
Info<< " Writing face interpolation weights (0..0.5) to "
<< cellWeights.name() << endl;
cellWeights.write();
if (writeFaceFields)
{
writeSurfaceField(mesh, "face_faceWeight", mesh.weights());
}
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
}
// Skewness
// ~~~~~~~~
if (selectedFields.found("skewness"))
{
//- Face based skewness
const scalarField faceSkewness
(
polyMeshTools::faceSkewness
(
mesh,
mesh.points(),
mesh.faceCentres(),
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Cell field - max of either face
volScalarField cellSkewness
(
IOobject
(
"skewness",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(faceSkewness, cellSkewness);
Info<< " Writing face skewness to " << cellSkewness.name() << endl;
cellSkewness.write();
if (writeFaceFields)
{
writeSurfaceField
(
mesh,
"face_skewness",
SubField<scalar>(faceSkewness, mesh.nInternalFaces())
);
}
}
// cellDeterminant
// ~~~~~~~~~~~~~~~
if (selectedFields.found("cellDeterminant"))
{
volScalarField cellDeterminant
(
IOobject
(
"cellDeterminant",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
cellDeterminant.primitiveFieldRef() =
primitiveMeshTools::cellDeterminant
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
syncTools::getInternalOrCoupledFaces(mesh)
);
cellDeterminant.correctBoundaryConditions();
Info<< " Writing cell determinant to "
<< cellDeterminant.name() << endl;
cellDeterminant.write();
}
// Aspect ratio
// ~~~~~~~~~~~~
if (selectedFields.found("aspectRatio"))
{
volScalarField aspectRatio
(
IOobject
(
"aspectRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
scalarField cellOpenness;
polyMeshTools::cellClosedness
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
mesh.cellVolumes(),
cellOpenness,
aspectRatio.ref()
);
aspectRatio.correctBoundaryConditions();
Info<< " Writing aspect ratio to " << aspectRatio.name() << endl;
aspectRatio.write();
}
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
if (selectedFields.found("cellAspectRatio"))
{
volScalarField aspectRatio
(
IOobject
(
"cellAspectRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
aspectRatio.ref().field() = cellAspectRatio(mesh);
aspectRatio.correctBoundaryConditions();
Info<< " Writing approximate aspect ratio to "
<< aspectRatio.name() << endl;
aspectRatio.write();
}
// cell type
// ~~~~~~~~~
if (selectedFields.found("cellShapes"))
{
volScalarField shape
(
IOobject
(
"cellShapes",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
zeroGradientFvPatchScalarField::typeName
);
const cellShapeList& cellShapes = mesh.cellShapes();
forAll(cellShapes, cellI)
{
const cellModel& model = cellShapes[cellI].model();
shape[cellI] = model.index();
}
shape.correctBoundaryConditions();
Info<< " Writing cell shape (hex, tet etc.) to " << shape.name()
<< endl;
shape.write();
}
if (selectedFields.found("cellVolume"))
{
volScalarField V
(
IOobject
(
"cellVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimVolume, Zero),
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
calculatedFvPatchScalarField::typeName
);
V.ref() = mesh.V();
Info<< " Writing cell volume to " << V.name() << endl;
V.write();
}
if (selectedFields.found("cellVolumeRatio"))
{
const scalarField faceVolumeRatio
(
polyMeshTools::volRatio
(
mesh,
mesh.V()
)
);
volScalarField cellVolumeRatio
(
IOobject
(
"cellVolumeRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take min
minFaceToCell(faceVolumeRatio, cellVolumeRatio);
Info<< " Writing cell volume ratio to "
<< cellVolumeRatio.name() << endl;
cellVolumeRatio.write();
if (writeFaceFields)
{
writeSurfaceField
(
mesh,
"face_cellVolumeRatio",
SubField<scalar>(faceVolumeRatio, mesh.nInternalFaces())
);
}
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// minTetVolume
if (selectedFields.found("minTetVolume"))
{
volScalarField minTetVolume
(
IOobject
(
"minTetVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minTetVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const pointField& p = mesh.points();
forAll(own, facei)
{
const face& f = mesh.faces()[facei];
const point& fc = mesh.faceCentres()[facei];
{
const point& ownCc = mesh.cellCentres()[own[facei]];
scalar& ownVol = minTetVolume[own[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
ownCc,
fc
).quality();
ownVol = min(ownVol, tetQual);
}
}
if (mesh.isInternalFace(facei))
{
const point& neiCc = mesh.cellCentres()[nei[facei]];
scalar& neiVol = minTetVolume[nei[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc,
neiCc
).quality();
neiVol = min(neiVol, tetQual);
}
}
}
minTetVolume.correctBoundaryConditions();
Info<< " Writing minTetVolume to " << minTetVolume.name() << endl;
minTetVolume.write();
}
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
// minPyrVolume
if (selectedFields.found("minPyrVolume"))
{
volScalarField minPyrVolume
(
IOobject
(
"minPyrVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minPyrVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
// Get owner and neighbour pyr volumes
scalarField ownPyrVol(mesh.nFaces());
scalarField neiPyrVol(mesh.nInternalFaces());
primitiveMeshTools::facePyramidVolume
(
mesh,
mesh.points(),
mesh.cellCentres(),
ownPyrVol,
neiPyrVol
);
// Get min pyr vol per cell
scalarField& cellFld = minPyrVolume.ref();
cellFld = GREAT;
const labelUList& own = mesh.owner();
const labelUList& nei = mesh.neighbour();
// Internal faces
forAll(own, facei)
{
cellFld[own[facei]] = min(cellFld[own[facei]], ownPyrVol[facei]);
cellFld[nei[facei]] = min(cellFld[nei[facei]], neiPyrVol[facei]);
}
// Patch faces
for (const auto& fvp : minPyrVolume.boundaryField())
{
const labelUList& fc = fvp.patch().faceCells();
forAll(fc, i)
{
const label meshFacei = fvp.patch().start();
cellFld[fc[i]] = min(cellFld[fc[i]], ownPyrVol[meshFacei]);
}
}
minPyrVolume.correctBoundaryConditions();
Info<< " Writing minPyrVolume to " << minPyrVolume.name() << endl;
minPyrVolume.write();
if (writeFaceFields)
{
scalarField minFacePyrVol(neiPyrVol);
minFacePyrVol = min
(
minFacePyrVol,
SubField<scalar>(ownPyrVol, mesh.nInternalFaces())
);
writeSurfaceField(mesh, "face_minPyrVolume", minFacePyrVol);
}
if (selectedFields.found("cellRegion"))
{
volScalarField cellRegion
(
IOobject
(
"cellRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
regionSplit rs(mesh);
forAll(rs, celli)
{
cellRegion[celli] = rs[celli];
}
cellRegion.correctBoundaryConditions();
Info<< " Writing cell region to " << cellRegion.name() << endl;
cellRegion.write();
}
if (selectedFields.found("wallDistance"))
{
// See if wallDist.method entry in fvSchemes before calling factory
// method of wallDist. Have 'failing' version of wallDist::New instead?
const dictionary& schemesDict =
static_cast<const fvSchemes&>(mesh).schemesDict();
if (schemesDict.found("wallDist"))
{
if (schemesDict.subDict("wallDist").found("method"))
{
// Wall distance
volScalarField y("wallDistance", wallDist::New(mesh).y());
Info<< " Writing wall distance to " << y.name() << endl;
y.write();
// Wall-reflection vectors
//const volVectorField& n = wallDist::New(mesh).n();
//Info<< " Writing wall normal to " << n.name() << endl;
//n.write();
}
}
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
if (selectedFields.found("cellZone"))
{
volScalarField cellZone
(
IOobject
(
"cellZone",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(scalar(-1)),
calculatedFvPatchScalarField::typeName
);
const cellZoneMesh& czs = mesh.cellZones();
for (const auto& zone : czs)
{
UIndirectList<scalar>(cellZone, zone) = zone.index();
}
cellZone.correctBoundaryConditions();
Info<< " Writing cell zoning to " << cellZone.name() << endl;
cellZone.write();
}
if (selectedFields.found("faceZone"))
{
// Determine for each face the zone index (scalar for ease of
// manipulation)
scalarField zoneID(mesh.nFaces(), -1);
const faceZoneMesh& czs = mesh.faceZones();
for (const auto& zone : czs)
{
UIndirectList<scalar>(zoneID, zone) = zone.index();
}
// Split into internal and boundary values
surfaceScalarField faceZone
(
IOobject
(
"faceZone",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(scalar(-1)),
calculatedFvsPatchScalarField::typeName
);
faceZone.primitiveFieldRef() =
SubField<scalar>(zoneID, mesh.nInternalFaces());
surfaceScalarField::Boundary& bfld = faceZone.boundaryFieldRef();
for (auto& pfld : bfld)
const fvPatch& fvp = pfld.patch();
pfld == SubField<scalar>(zoneID, fvp.size(), fvp.start());
}
//faceZone.correctBoundaryConditions();
Info<< " Writing face zoning to " << faceZone.name() << endl;
faceZone.write();
}
Info<< endl;
}