Newer
Older
#include "writeFields.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "polyMeshTools.H"
#include "zeroGradientFvPatchFields.H"
#include "syncTools.H"
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
using namespace Foam;
void maxFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = -GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = max(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
void minFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = min(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
void minFaceToCell
(
const surfaceScalarField& faceData,
volScalarField& cellData,
const bool correctBoundaryConditions
)
{
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
const labelUList& own = cellData.mesh().owner();
const labelUList& nei = cellData.mesh().neighbour();
// Internal faces
forAll(own, facei)
{
cellFld[own[facei]] = min(cellFld[own[facei]], faceData[facei]);
cellFld[nei[facei]] = min(cellFld[nei[facei]], faceData[facei]);
}
// Patch faces
forAll(faceData.boundaryField(), patchi)
{
const fvsPatchScalarField& fvp = faceData.boundaryField()[patchi];
const labelUList& fc = fvp.patch().faceCells();
forAll(fc, i)
{
cellFld[fc[i]] = min(cellFld[fc[i]], fvp[i]);
}
}
volScalarField::Boundary& bfld = cellData.boundaryFieldRef();
forAll(bfld, patchi)
{
bfld[patchi] = faceData.boundaryField()[patchi];
}
if (correctBoundaryConditions)
{
cellData.correctBoundaryConditions();
}
}
void Foam::writeFields
(
const fvMesh& mesh,
const wordHashSet& selectedFields
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
)
{
if (selectedFields.empty())
{
return;
}
Info<< "Writing fields with mesh quality parameters" << endl;
if (selectedFields.found("nonOrthoAngle"))
{
//- Face based orthogonality
const scalarField faceOrthogonality
(
polyMeshTools::faceOrthogonality
(
mesh,
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Face based angle
const scalarField nonOrthoAngle
(
radToDeg
(
Foam::acos(min(scalar(1), faceOrthogonality))
)
);
//- Cell field - max of either face
volScalarField cellNonOrthoAngle
(
IOobject
(
"nonOrthoAngle",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(nonOrthoAngle, cellNonOrthoAngle);
Info<< " Writing non-orthogonality (angle) to "
<< cellNonOrthoAngle.name() << endl;
cellNonOrthoAngle.write();
}
if (selectedFields.found("faceWeight"))
{
volScalarField cellWeights
(
IOobject
(
"faceWeight",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
wordList // wanted bc types
(
mesh.boundary().size(),
calculatedFvPatchScalarField::typeName
),
mesh.weights().boundaryField().types() // current bc types
);
//- Take min
minFaceToCell(mesh.weights(), cellWeights, false);
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
Info<< " Writing face interpolation weights (0..0.5) to "
<< cellWeights.name() << endl;
cellWeights.write();
}
// Skewness
// ~~~~~~~~
if (selectedFields.found("skewness"))
{
//- Face based skewness
const scalarField faceSkewness
(
polyMeshTools::faceSkewness
(
mesh,
mesh.points(),
mesh.faceCentres(),
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Cell field - max of either face
volScalarField cellSkewness
(
IOobject
(
"skewness",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(faceSkewness, cellSkewness);
Info<< " Writing face skewness to " << cellSkewness.name() << endl;
cellSkewness.write();
}
// cellDeterminant
// ~~~~~~~~~~~~~~~
if (selectedFields.found("cellDeterminant"))
{
volScalarField cellDeterminant
(
IOobject
(
"cellDeterminant",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
cellDeterminant.primitiveFieldRef() =
primitiveMeshTools::cellDeterminant
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
syncTools::getInternalOrCoupledFaces(mesh)
);
cellDeterminant.correctBoundaryConditions();
Info<< " Writing cell determinant to "
<< cellDeterminant.name() << endl;
cellDeterminant.write();
}
// Aspect ratio
// ~~~~~~~~~~~~
if (selectedFields.found("aspectRatio"))
{
volScalarField aspectRatio
(
IOobject
(
"aspectRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
scalarField cellOpenness;
polyMeshTools::cellClosedness
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
mesh.cellVolumes(),
cellOpenness,
aspectRatio.ref()
);
aspectRatio.correctBoundaryConditions();
Info<< " Writing aspect ratio to " << aspectRatio.name() << endl;
aspectRatio.write();
}
// cell type
// ~~~~~~~~~
if (selectedFields.found("cellShapes"))
{
volScalarField shape
(
IOobject
(
"cellShapes",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
zeroGradientFvPatchScalarField::typeName
);
const cellShapeList& cellShapes = mesh.cellShapes();
forAll(cellShapes, cellI)
{
const cellModel& model = cellShapes[cellI].model();
shape[cellI] = model.index();
}
shape.correctBoundaryConditions();
Info<< " Writing cell shape (hex, tet etc.) to " << shape.name()
<< endl;
shape.write();
}
if (selectedFields.found("cellVolume"))
{
volScalarField V
(
IOobject
(
"cellVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimVolume, Zero),
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
calculatedFvPatchScalarField::typeName
);
V.ref() = mesh.V();
Info<< " Writing cell volume to " << V.name() << endl;
V.write();
}
if (selectedFields.found("cellVolumeRatio"))
{
const scalarField faceVolumeRatio
(
polyMeshTools::volRatio
(
mesh,
mesh.V()
)
);
volScalarField cellVolumeRatio
(
IOobject
(
"cellVolumeRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take min
minFaceToCell(faceVolumeRatio, cellVolumeRatio);
Info<< " Writing cell volume ratio to "
<< cellVolumeRatio.name() << endl;
cellVolumeRatio.write();
}
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
// minTetVolume
if (selectedFields.found("minTetVolume"))
{
volScalarField minTetVolume
(
IOobject
(
"minTetVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minTetVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const pointField& p = mesh.points();
forAll(own, facei)
{
const face& f = mesh.faces()[facei];
const point& fc = mesh.faceCentres()[facei];
{
const point& ownCc = mesh.cellCentres()[own[facei]];
scalar& ownVol = minTetVolume[own[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
ownCc,
fc
).quality();
ownVol = min(ownVol, tetQual);
}
}
if (mesh.isInternalFace(facei))
{
const point& neiCc = mesh.cellCentres()[nei[facei]];
scalar& neiVol = minTetVolume[nei[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc,
neiCc
).quality();
neiVol = min(neiVol, tetQual);
}
}
}
minTetVolume.correctBoundaryConditions();
Info<< " Writing minTetVolume to " << minTetVolume.name() << endl;
minTetVolume.write();
}
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
// minPyrVolume
if (selectedFields.found("minPyrVolume"))
{
volScalarField minPyrVolume
(
IOobject
(
"minPyrVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minPyrVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
// Get owner and neighbour pyr volumes
scalarField ownPyrVol(mesh.nFaces());
scalarField neiPyrVol(mesh.nInternalFaces());
primitiveMeshTools::facePyramidVolume
(
mesh,
mesh.points(),
mesh.cellCentres(),
ownPyrVol,
neiPyrVol
);
// Get min pyr vol per cell
scalarField& cellFld = minPyrVolume.ref();
cellFld = GREAT;
const labelUList& own = mesh.owner();
const labelUList& nei = mesh.neighbour();
// Internal faces
forAll(own, facei)
{
cellFld[own[facei]] = min(cellFld[own[facei]], ownPyrVol[facei]);
cellFld[nei[facei]] = min(cellFld[nei[facei]], neiPyrVol[facei]);
}
// Patch faces
for (const auto& fvp : minPyrVolume.boundaryField())
{
const labelUList& fc = fvp.patch().faceCells();
forAll(fc, i)
{
const label meshFacei = fvp.patch().start();
cellFld[fc[i]] = min(cellFld[fc[i]], ownPyrVol[meshFacei]);
}
}
minPyrVolume.correctBoundaryConditions();
Info<< " Writing minPyrVolume to " << minPyrVolume.name() << endl;
minPyrVolume.write();
}
if (selectedFields.found("cellRegion"))
{
volScalarField cellRegion
(
IOobject
(
"cellRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
regionSplit rs(mesh);
forAll(rs, celli)
{
cellRegion[celli] = rs[celli];
}
cellRegion.correctBoundaryConditions();
Info<< " Writing cell region to " << cellRegion.name() << endl;
cellRegion.write();
}
if (selectedFields.found("wallDistance"))
{
// See if wallDist.method entry in fvSchemes before calling factory
// method of wallDist. Have 'failing' version of wallDist::New instead?
const dictionary& schemesDict =
static_cast<const fvSchemes&>(mesh).schemesDict();
if (schemesDict.found("wallDist"))
{
if (schemesDict.subDict("wallDist").found("method"))
{
// Wall distance
volScalarField y("wallDistance", wallDist::New(mesh).y());
Info<< " Writing wall distance to " << y.name() << endl;
y.write();
// Wall-reflection vectors
//const volVectorField& n = wallDist::New(mesh).n();
//Info<< " Writing wall normal to " << n.name() << endl;
//n.write();
}
}
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
if (selectedFields.found("cellZone"))
{
volScalarField cellZone
(
IOobject
(
"cellZone",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(scalar(-1)),
calculatedFvPatchScalarField::typeName
);
const cellZoneMesh& czs = mesh.cellZones();
for (const auto& zone : czs)
{
UIndirectList<scalar>(cellZone, zone) = zone.index();
}
cellZone.correctBoundaryConditions();
Info<< " Writing cell zoning to " << cellZone.name() << endl;
cellZone.write();
}
if (selectedFields.found("faceZone"))
{
// Determine for each face the zone index (scalar for ease of
// manipulation)
scalarField zoneID(mesh.nFaces(), -1);
const faceZoneMesh& czs = mesh.faceZones();
for (const auto& zone : czs)
{
UIndirectList<scalar>(zoneID, zone) = zone.index();
}
// Split into internal and boundary values
surfaceScalarField faceZone
(
IOobject
(
"faceZone",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(scalar(-1)),
calculatedFvsPatchScalarField::typeName
);
faceZone.primitiveFieldRef() =
SubField<scalar>(zoneID, mesh.nInternalFaces());
surfaceScalarField::Boundary& bfld = faceZone.boundaryFieldRef();
for (auto& pfld : bfld)
const fvPatch& fvp = pfld.patch();
pfld == SubField<scalar>(zoneID, fvp.size(), fvp.start());
}
//faceZone.correctBoundaryConditions();
Info<< " Writing face zoning to " << faceZone.name() << endl;
faceZone.write();
}
Info<< endl;
}