Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
reconstructPar
Description
Reconstructs fields of a case that is decomposed for parallel
execution of OpenFOAM.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "timeSelector.H"
#include "fvCFD.H"
#include "IOobjectList.H"
#include "processorMeshes.H"
#include "regionProperties.H"
#include "fvFieldReconstructor.H"
#include "pointFieldReconstructor.H"
#include "reconstructLagrangian.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Reconstruct fields of a parallel case"
);
// enable -constant ... if someone really wants it
// enable -zeroTime to prevent accidentally trashing the initial fields
timeSelector::addOptions(true, true);
argList::noParallel();
# include "addRegionOption.H"
argList::addBoolOption
(
"allRegions",
"operate on all regions in regionProperties"
);
argList::addOption
(
"fields",
"list",
"specify a list of fields to be reconstructed. Eg, '(U T p)' - "
"regular expressions not currently supported"
);
argList::addOption
(
"lagrangianFields",
"list",
"specify a list of lagrangian fields to be reconstructed. Eg, '(U d)' -"
"regular expressions not currently supported, "
"positions always included."
);
argList::addBoolOption
(
"noLagrangian",
"skip reconstructing lagrangian positions and fields"
);
argList::addBoolOption
(
"newTimes",
"only reconstruct new times (i.e. that do not exist already)"
);
# include "setRootCase.H"
# include "createTime.H"
if (args.optionFound("fields"))
args.optionLookup("fields")() >> selectedFields;
const bool noLagrangian = args.optionFound("noLagrangian");
HashSet<word> selectedLagrangianFields;
if (args.optionFound("lagrangianFields"))
{
if (noLagrangian)
{
FatalErrorIn(args.executable())
<< "Cannot specify noLagrangian and lagrangianFields "
<< "options together."
<< exit(FatalError);
}
args.optionLookup("lagrangianFields")() >> selectedLagrangianFields;
}
const bool newTimes = args.optionFound("newTimes");
const bool allRegions = args.optionFound("allRegions");
// determine the processor count directly
label nProcs = 0;
while (isDir(args.path()/(word("processor") + name(nProcs))))
{
++nProcs;
}
if (!nProcs)
{
FatalErrorIn(args.executable())
<< "No processor* directories found"
<< exit(FatalError);
}
// Create the processor databases
PtrList<Time> databases(nProcs);
forAll(databases, procI)
{
databases.set
(
procI,
new Time
(
Time::controlDictName,
args.rootPath(),
args.caseName()/fileName(word("processor") + name(procI))
)
);
}
// use the times list from the master processor
// and select a subset based on the command-line options
instantList timeDirs = timeSelector::select
(
databases[0].times(),
args
);
if (timeDirs.empty())
{
FatalErrorIn(args.executable())
<< "No times selected"
<< exit(FatalError);
}
// Get current times if -newTimes
instantList masterTimeDirs;
if (newTimes)
{
masterTimeDirs = runTime.times();
}
// Set all times on processor meshes equal to reconstructed mesh
forAll(databases, procI)
{
databases[procI].setTime(runTime.timeName(), runTime.timeIndex());
}
wordList regionNames;
wordList regionDirs;
if (allRegions)
Info<< "Reconstructing for all regions in regionProperties" << nl
<< endl;
regionProperties rp(runTime);
forAllConstIter(HashTable<wordList>, rp, iter)
const wordList& regions = iter();
forAll(regions, i)
if (findIndex(regionNames, regions[i]) == -1)
regionNames.append(regions[i]);
regionDirs = regionNames;
}
else
{
word regionName;
if (args.optionReadIfPresent("region", regionName))
{
regionNames = wordList(1, regionName);
regionDirs = regionNames;
}
else
{
regionNames = wordList(1, fvMesh::defaultRegion);
regionDirs = wordList(1, word::null);
}
}
forAll(regionNames, regionI)
{
const word& regionName = regionNames[regionI];
const word& regionDir = regionDirs[regionI];
Info<< "\n\nReconstructing fields for mesh " << regionName << nl
<< endl;
fvMesh mesh
(
IOobject
(
regionName,
runTime.timeName(),
runTime,
Foam::IOobject::MUST_READ
)
);
// Read all meshes and addressing to reconstructed mesh
processorMeshes procMeshes(databases, regionName);
// check face addressing for meshes that have been decomposed
// with a very old foam version
# include "checkFaceAddressingComp.H"
// Loop over all times
forAll(timeDirs, timeI)
if (newTimes)
{
// Compare on timeName, not value
bool foundTime = false;
forAll(masterTimeDirs, i)
{
if (masterTimeDirs[i].name() == timeDirs[timeI].name())
{
foundTime = true;
break;
}
}
if (foundTime)
{
Info<< "Skipping time " << timeDirs[timeI].name()
<< endl << endl;
continue;
}
}
// Set time for global database
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl << endl;
// Set time for all databases
forAll(databases, procI)
{
databases[procI].setTime(timeDirs[timeI], timeI);
}
// Check if any new meshes need to be read.
fvMesh::readUpdateState meshStat = mesh.readUpdate();
fvMesh::readUpdateState procStat = procMeshes.readUpdate();
if (procStat == fvMesh::POINTS_MOVED)
{
// Reconstruct the points for moving mesh cases and write
// them out
procMeshes.reconstructPoints(mesh);
}
else if (meshStat != procStat)
WarningIn(args.executable())
<< "readUpdate for the reconstructed mesh:"
<< meshStat << nl
<< "readUpdate for the processor meshes :"
<< procStat << nl
<< "These should be equal or your addressing"
<< " might be incorrect."
<< " Please check your time directories for any "
<< "mesh directories." << endl;
// Get list of objects from processor0 database
IOobjectList objects
procMeshes.meshes()[0],
databases[0].timeName()
{
// If there are any FV fields, reconstruct them
Info<< "Reconstructing FV fields" << nl << endl;
fvFieldReconstructor fvReconstructor
(
mesh,
procMeshes.meshes(),
procMeshes.faceProcAddressing(),
procMeshes.cellProcAddressing(),
procMeshes.boundaryProcAddressing()
);
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
fvReconstructor.reconstructFvVolumeInternalFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields
<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<tensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<tensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<sphericalTensor>
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<tensor>
(
objects,
selectedFields
);
if (fvReconstructor.nReconstructed() == 0)
{
Info<< "No FV fields" << nl << endl;
}
}
{
Info<< "Reconstructing point fields" << nl << endl;
const pointMesh& pMesh = pointMesh::New(mesh);
PtrList<pointMesh> pMeshes(procMeshes.meshes().size());
forAll(pMeshes, procI)
{
pMeshes.set
procI,
new pointMesh(procMeshes.meshes()[procI])
);
}
pointFieldReconstructor pointReconstructor
(
pMesh,
pMeshes,
procMeshes.pointProcAddressing(),
procMeshes.boundaryProcAddressing()
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
pointReconstructor.reconstructFields<scalar>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<vector>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<sphericalTensor>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<symmTensor>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<tensor>
(
objects,
selectedFields
);
if (pointReconstructor.nReconstructed() == 0)
Info<< "No point fields" << nl << endl;
}
}
// If there are any clouds, reconstruct them.
// The problem is that a cloud of size zero will not get written so
// in pass 1 we determine the cloud names and per cloud name the
// fields. Note that the fields are stored as IOobjectList from
// the first processor that has them. They are in pass2 only used
// for name and type (scalar, vector etc).
if (!noLagrangian)
{
HashTable<IOobjectList> cloudObjects;
forAll(databases, procI)
{
fileNameList cloudDirs
(
readDir
databases[procI].timePath()
/ regionDir
/ cloud::prefix,
fileName::DIRECTORY
)
);
forAll(cloudDirs, i)
{
// Check if we already have cloud objects for this
// cloudname
HashTable<IOobjectList>::const_iterator iter =
cloudObjects.find(cloudDirs[i]);
if (iter == cloudObjects.end())
// Do local scan for valid cloud objects
IOobjectList sprayObjs
(
procMeshes.meshes()[procI],
databases[procI].timeName(),
cloud::prefix/cloudDirs[i]
);
IOobject* positionsPtr = sprayObjs.lookup
(
"positions"
);
if (positionsPtr)
{
cloudObjects.insert(cloudDirs[i], sprayObjs);
}
if (cloudObjects.size())
// Pass2: reconstruct the cloud
forAllConstIter(HashTable<IOobjectList>, cloudObjects, iter)
{
const word cloudName = string::validate<word>
(
iter.key()
);
// Objects (on arbitrary processor)
const IOobjectList& sprayObjs = iter();
Info<< "Reconstructing lagrangian fields for cloud "
<< cloudName << nl << endl;
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
reconstructLagrangianPositions
(
mesh,
cloudName,
procMeshes.meshes(),
procMeshes.faceProcAddressing(),
procMeshes.cellProcAddressing()
);
reconstructLagrangianFields<label>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<label>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<scalar>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<scalar>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<vector>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<vector>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<sphericalTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<sphericalTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<symmTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<symmTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<tensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<tensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
}
}
else
{
Info<< "No lagrangian fields" << nl << endl;
// If there are any "uniform" directories copy them from
// the master processor
forAll(timeDirs, timeI)
{
fileName uniformDir0 = databases[0].timePath()/"uniform";
if (isDir(uniformDir0))