Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2015-2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "meshRefinement.H"
#include "Time.H"
#include "refinementSurfaces.H"
#include "refinementFeatures.H"
#include "shellSurfaces.H"
#include "triSurfaceMesh.H"
#include "treeDataCell.H"
#include "searchableSurfaces.H"
#include "DynamicField.H"
#include "transportData.H"
#include "FaceCellWave.H"
#include "volFields.H"
#include "zeroGradientFvPatchFields.H"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::label Foam::meshRefinement::markSurfaceGapRefinement
(
const scalar planarCos,
const label nAllowRefine,
const labelList& neiLevel,
const pointField& neiCc,
labelList& refineCell,
label& nRefine
) const
{
const labelList& cellLevel = meshCutter_.cellLevel();
const pointField& cellCentres = mesh_.cellCentres();
// Get the gap level for the shells
const labelList maxLevel(shells_.maxGapLevel());
label oldNRefine = nRefine;
if (max(maxLevel) > 0)
{
// Use cached surfaceIndex_ to detect if any intersection. If so
// re-intersect to determine level wanted.
// Collect candidate faces
// ~~~~~~~~~~~~~~~~~~~~~~~
labelList testFaces(getRefineCandidateFaces(refineCell));
// Collect segments
// ~~~~~~~~~~~~~~~~
pointField start(testFaces.size());
pointField end(testFaces.size());
{
labelList minLevel(testFaces.size());
calcCellCellRays
(
neiCc,
neiLevel,
testFaces,
start,
end,
minLevel
);
}
// Collect cells to test for inside/outside in shell
labelList cellToCompact(mesh_.nCells(), -1);
labelList bFaceToCompact(mesh_.nBoundaryFaces(), -1);
labelList gapShell;
List<FixedList<label, 3>> shellGapInfo;
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
List<volumeType> shellGapMode;
{
DynamicField<point> compactToCc(mesh_.nCells()/10);
DynamicList<label> compactToLevel(compactToCc.capacity());
forAll(testFaces, i)
{
label faceI = testFaces[i];
label own = mesh_.faceOwner()[faceI];
if (cellToCompact[own] == -1)
{
cellToCompact[own] = compactToCc.size();
compactToCc.append(cellCentres[own]);
compactToLevel.append(cellLevel[own]);
}
if (mesh_.isInternalFace(faceI))
{
label nei = mesh_.faceNeighbour()[faceI];
if (cellToCompact[nei] == -1)
{
cellToCompact[nei] = compactToCc.size();
compactToCc.append(cellCentres[nei]);
compactToLevel.append(cellLevel[nei]);
}
}
else
{
label bFaceI = faceI - mesh_.nInternalFaces();
if (bFaceToCompact[bFaceI] == -1)
{
bFaceToCompact[bFaceI] = compactToCc.size();
compactToCc.append(neiCc[bFaceI]);
compactToLevel.append(neiLevel[bFaceI]);
}
}
}
shells_.findHigherGapLevel
(
compactToCc,
compactToLevel,
gapShell,
shellGapInfo,
shellGapMode
);
}
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//const fileName dir(mesh_.time().path()/timeName());
//if (debug)
//{
// mkDir(dir);
// OBJstream insideStr(dir/"insideShell.obj");
// OBJstream outsideStr(dir/"outsideShell.obj");
// Pout<< "Writing points to:" << nl
// << " inside : " << insideStr.name() << nl
// << " outside: " << outsideStr.name() << nl
// << endl;
//
// forAll(cellToCompact, celli)
// {
// const label compacti = cellToCompact[celli];
//
// if (compacti != -1)
// {
// if (gapShell[compacti] != -1)
// {
// insideStr.write(mesh_.cellCentres()[celli]);
// }
// else
// {
// outsideStr.write(mesh_.cellCentres()[celli]);
// }
// }
// }
// forAll(bFaceToCompact, bFacei)
// {
// const label compacti = bFaceToCompact[bFacei];
// if (compacti != -1)
// {
// if (gapShell[compacti] != -1)
// {
// insideStr.write(neiCc[bFacei]);
// }
// else
// {
// outsideStr.write(neiCc[bFacei]);
// }
// }
// }
//}
const List<FixedList<label, 3>>& extendedGapLevel =
surfaces_.extendedGapLevel();
const List<volumeType>& extendedGapMode =
surfaces_.extendedGapMode();
const boolList& extendedGapSelf = surfaces_.gapSelf();
labelList ccSurface1;
List<pointIndexHit> ccHit1;
labelList ccRegion1;
vectorField ccNormal1;
labelList ccSurface2;
List<pointIndexHit> ccHit2;
labelList ccRegion2;
vectorField ccNormal2;
surfaces_.findNearestIntersection
(
identity(surfaces_.surfaces().size()),
start,
end,
ccSurface1,
ccHit1,
ccRegion1,
ccNormal1,
ccSurface2,
ccHit2,
ccRegion2,
ccNormal2
);
}
start.clear();
end.clear();
DynamicField<point> rayStart(2*ccSurface1.size());
DynamicField<point> rayEnd(2*ccSurface1.size());
DynamicField<scalar> gapSize(2*ccSurface1.size());
DynamicField<point> rayStart2(2*ccSurface1.size());
DynamicField<point> rayEnd2(2*ccSurface1.size());
DynamicField<scalar> gapSize2(2*ccSurface1.size());
DynamicList<label> cellMap(2*ccSurface1.size());
DynamicList<label> compactMap(2*ccSurface1.size());
forAll(ccSurface1, i)
label surfI = ccSurface1[i];
if (surfI != -1)
{
label globalRegionI =
surfaces_.globalRegion(surfI, ccRegion1[i]);
label faceI = testFaces[i];
const point& surfPt = ccHit1[i].hitPoint();
label own = mesh_.faceOwner()[faceI];
if
(
cellToCompact[own] != -1
&& shellGapInfo[cellToCompact[own]][2] > 0
)
{
// Combine info from shell and surface
label compactI = cellToCompact[own];
FixedList<label, 3> gapInfo;
volumeType gapMode;
mergeGapInfo
(
shellGapInfo[compactI],
shellGapMode[compactI],
extendedGapLevel[globalRegionI],
extendedGapMode[globalRegionI],
gapInfo,
gapMode
);
const point& cc = cellCentres[own];
label nRays = generateRays
(
false,
surfPt,
ccNormal1[i],
gapInfo,
gapMode,
surfPt+((cc-surfPt)&ccNormal1[i])*ccNormal1[i],
cellLevel[own],
rayStart,
rayEnd,
gapSize,
rayStart2,
rayEnd2,
gapSize2
);
for (label j = 0; j < nRays; j++)
cellMap.append(own);
compactMap.append(i);
}
}
if (mesh_.isInternalFace(faceI))
{
label nei = mesh_.faceNeighbour()[faceI];
if
(
cellToCompact[nei] != -1
&& shellGapInfo[cellToCompact[nei]][2] > 0
)
{
// Combine info from shell and surface
label compactI = cellToCompact[nei];
FixedList<label, 3> gapInfo;
volumeType gapMode;
mergeGapInfo
(
shellGapInfo[compactI],
shellGapMode[compactI],
extendedGapLevel[globalRegionI],
extendedGapMode[globalRegionI],
gapInfo,
gapMode
);
const point& cc = cellCentres[nei];
label nRays = generateRays
(
false,
surfPt,
ccNormal1[i],
gapInfo,
gapMode,
surfPt+((cc-surfPt)&ccNormal1[i])*ccNormal1[i],
cellLevel[nei],
rayStart,
rayEnd,
gapSize,
rayStart2,
rayEnd2,
gapSize2
);
for (label j = 0; j < nRays; j++)
cellMap.append(nei);
compactMap.append(i);
}
}
}
else
{
// Note: on coupled face. What cell are we going to
// refine? We've got the neighbouring cell centre
// and level but we cannot mark it for refinement on
// this side...
label bFaceI = faceI - mesh_.nInternalFaces();
if
(
bFaceToCompact[bFaceI] != -1
&& shellGapInfo[bFaceToCompact[bFaceI]][2] > 0
)
{
// Combine info from shell and surface
label compactI = bFaceToCompact[bFaceI];
FixedList<label, 3> gapInfo;
volumeType gapMode;
mergeGapInfo
(
shellGapInfo[compactI],
shellGapMode[compactI],
extendedGapLevel[globalRegionI],
extendedGapMode[globalRegionI],
gapInfo,
gapMode
);
const point& cc = neiCc[bFaceI];
label nRays = generateRays
(
false,
surfPt,
ccNormal1[i],
gapInfo,
gapMode,
surfPt+((cc-surfPt)&ccNormal1[i])*ccNormal1[i],
neiLevel[bFaceI],
rayStart,
rayEnd,
gapSize,
rayStart2,
rayEnd2,
gapSize2
);
for (label j = 0; j < nRays; j++)
cellMap.append(-1); // See above.
compactMap.append(i);
}
}
}
}
}
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
Info<< "Shooting " << returnReduce(rayStart.size(), sumOp<label>())
<< " rays from " << returnReduce(testFaces.size(), sumOp<label>())
<< " intersected faces" << endl;
rayStart.shrink();
rayEnd.shrink();
gapSize.shrink();
rayStart2.shrink();
rayEnd2.shrink();
gapSize2.shrink();
cellMap.shrink();
compactMap.shrink();
testFaces.clear();
ccSurface1.clear();
ccHit1.clear();
ccRegion1.clear();
ccNormal1 = UIndirectList<vector>(ccNormal1, compactMap)();
// Do intersections in pairs
labelList surf1;
List<pointIndexHit> hit1;
vectorField normal1;
surfaces_.findNearestIntersection
(
rayStart,
rayEnd,
surf1,
hit1,
normal1
labelList surf2;
List<pointIndexHit> hit2;
vectorField normal2;
surfaces_.findNearestIntersection
(
rayStart2,
rayEnd2,
surf2,
hit2,
normal2
);
forAll(surf1, i)
// Combine selfProx of shell and surfaces.
// Ignore regions for now
const label cellI = cellMap[i];
const label shelli =
(
(cellI != -1 && cellToCompact[cellI] != -1)
? gapShell[cellToCompact[cellI]]
: -1
);
bool selfProx = true;
if (shelli != -1)
{
selfProx = shells_.gapSelf()[shelli][0];
}
if (surf1[i] != -1 && selfProx)
{
const label globalRegioni = surfaces_.globalRegion(surf1[i], 0);
selfProx = extendedGapSelf[globalRegioni];
}
if
(
surf1[i] != -1
&& surf2[i] != -1
&& (surf2[i] != surf1[i] || selfProx)
)
{
// Found intersection with surface. Check opposite normal.
if
(
cellI != -1
&& (mag(normal1[i]&normal2[i]) > planarCos)
&& (
magSqr(hit1[i].hitPoint()-hit2[i].hitPoint())
< Foam::sqr(gapSize[i])
)
)
{
if
(
!markForRefine
(
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
nAllowRefine,
refineCell[cellI],
nRefine
)
)
{
break;
}
}
}
}
if
(
returnReduce(nRefine, sumOp<label>())
> returnReduce(nAllowRefine, sumOp<label>())
)
{
Info<< "Reached refinement limit." << endl;
}
}
return returnReduce(nRefine-oldNRefine, sumOp<label>());
}
//Foam::meshRefinement::findNearestOppositeOp::findNearestOppositeOp
//(
// const indexedOctree<treeDataTriSurface>& tree,
// const point& oppositePoint,
// const vector& oppositeNormal,
// const scalar minCos
//)
//:
// tree_(tree),
// oppositePoint_(oppositePoint),
// oppositeNormal_(oppositeNormal),
// minCos_(minCos)
//{}
//
//
//void Foam::meshRefinement::findNearestOppositeOp::operator()
//(
// const labelUList& indices,
// const point& sample,
// scalar& nearestDistSqr,
// label& minIndex,
// point& nearestPoint
//) const
//{
// const treeDataTriSurface& shape = tree_.shapes();
// const triSurface& patch = shape.patch();
// const pointField& points = patch.points();
//
// forAll(indices, i)
// {
// const label index = indices[i];
// const labelledTri& f = patch[index];
//
// pointHit nearHit = f.nearestPoint(sample, points);
// scalar distSqr = sqr(nearHit.distance());
//
// if (distSqr < nearestDistSqr)
// {
// // Nearer. Check if
// // - a bit way from other hit
// // - in correct search cone
// vector d(nearHit.rawPoint()-oppositePoint_);
// scalar normalDist(d&oppositeNormal_);
//
// if (normalDist > Foam::sqr(SMALL) && normalDist/mag(d) > minCos_)
// {
// nearestDistSqr = distSqr;
// minIndex = index;
// nearestPoint = nearHit.rawPoint();
// }
// }
// }
//}
//
//
//void Foam::meshRefinement::searchCone
//(
// const label surfI,
// labelList& nearMap, // cells
// scalarField& nearGap, // gap size
// List<pointIndexHit>& nearInfo, // nearest point on surface
// List<pointIndexHit>& oppositeInfo // detected point on gap (or miss)
//) const
//{
// const labelList& cellLevel = meshCutter_.cellLevel();
// const pointField& cellCentres = mesh_.cellCentres();
// const scalar edge0Len = meshCutter_.level0EdgeLength();
//
// const labelList& surfaceIndices = surfaces_.surfaces();
// const List<FixedList<label, 3>>& extendedGapLevel =
// surfaces_.extendedGapLevel();
// const List<volumeType>& extendedGapMode = surfaces_.extendedGapMode();
//
//
// label geomI = surfaceIndices[surfI];
// const searchableSurface& geom = surfaces_.geometry()[geomI];
//
// const triSurfaceMesh& s = refCast<const triSurfaceMesh>(geom);
// const indexedOctree<treeDataTriSurface>& tree = s.tree();
//
//
// const scalar searchCos = Foam::cos(degToRad(30.0));
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
//
// // Normals for ray shooting and inside/outside detection
// vectorField nearNormal;
// geom.getNormal(nearInfo, nearNormal);
// // Regions
// labelList nearRegion;
// geom.getRegion(nearInfo, nearRegion);
//
//
// // Now loop over all near points and search in the half cone
// labelList map(nearInfo.size());
// label compactI = 0;
//
// oppositeInfo.setSize(nearInfo.size());
//
// forAll(nearInfo, i)
// {
// label globalRegionI =
// surfaces_.globalRegion(surfI, nearRegion[i]);
//
// // Get updated gap information now we have the region
// label nGapCells = extendedGapLevel[globalRegionI][0];
// label minLevel = extendedGapLevel[globalRegionI][1];
// label maxLevel = extendedGapLevel[globalRegionI][2];
// volumeType mode = extendedGapMode[globalRegionI];
//
// label cellI = nearMap[i];
// label cLevel = cellLevel[cellI];
//
// if (cLevel >= minLevel && cLevel < maxLevel)
// {
// scalar cellSize = edge0Len/pow(2.0, cLevel);
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
//
// // Update gap size
// nearGap[i] = nGapCells*cellSize;
//
// const point& nearPt = nearInfo[i].hitPoint();
// vector v(cellCentres[cellI]-nearPt);
// scalar magV = mag(v);
//
// // Like with ray shooting we want to
// // - find triangles up to nearGap away on the wanted side of the
// // surface
// // - find triangles up to 0.5*cellSize away on the unwanted side
// // of the surface. This is for cells straddling the surface
// // where
// // the cell centre might be on the wrong side of the surface
//
// // Tbd: check that cell centre is inbetween the gap hits
// // (only if the cell is far enough away)
//
// scalar posNormalSize = 0.0;
// scalar negNormalSize = 0.0;
//
// if (mode == volumeType::OUTSIDE)
// {
// posNormalSize = nearGap[i];
// if (magV < 0.5*cellSize)
// {
// negNormalSize = 0.5*cellSize;
// }
// }
// else if (mode == volumeType::INSIDE)
// {
// if (magV < 0.5*cellSize)
// {
// posNormalSize = 0.5*cellSize;
// }
// negNormalSize = nearGap[i];
// }
// else
// {
// posNormalSize = nearGap[i];
// negNormalSize = nearGap[i];
// }
//
// // Test with positive normal
// oppositeInfo[compactI] = tree.findNearest
// (
// nearPt,
// sqr(posNormalSize),
// findNearestOppositeOp
// (
// tree,
// nearPt,
// nearNormal[i],
// searchCos
// )
// );
//
// if (oppositeInfo[compactI].hit())
// {
// map[compactI++] = i;
// }
// else
// {
// // Test with negative normal
// oppositeInfo[compactI] = tree.findNearest
// (
// nearPt,
// sqr(negNormalSize),
// findNearestOppositeOp
// (
// tree,
// nearPt,
// -nearNormal[i],
// searchCos
// )
// );
//
// if (oppositeInfo[compactI].hit())
// {
// map[compactI++] = i;
// }
// }
// }
// }
//
// Info<< "Selected " << returnReduce(compactI, sumOp<label>())
// << " hits on the correct side out of "
// << returnReduce(map.size(), sumOp<label>()) << endl;
// map.setSize(compactI);
// oppositeInfo.setSize(compactI);
//
// nearMap = labelUIndList(nearMap, map)();
// nearGap = UIndirectList<scalar>(nearGap, map)();
// nearInfo = UIndirectList<pointIndexHit>(nearInfo, map)();
// nearNormal = UIndirectList<vector>(nearNormal, map)();
//
// // Exclude hits which aren't opposite enough. E.g. you might find
// // a point on a perpendicular wall - but this does not constitute a gap.
// vectorField oppositeNormal;
// geom.getNormal(oppositeInfo, oppositeNormal);
//
// compactI = 0;
// forAll(oppositeInfo, i)
// {
// if ((nearNormal[i] & oppositeNormal[i]) < -0.707)
// {
// map[compactI++] = i;
// }
// }
//
// Info<< "Selected " << returnReduce(compactI, sumOp<label>())
// << " hits opposite the nearest out of "
// << returnReduce(map.size(), sumOp<label>()) << endl;
// map.setSize(compactI);
//
// nearMap = labelUIndList(nearMap, map)();
// nearGap = UIndirectList<scalar>(nearGap, map)();
// nearInfo = UIndirectList<pointIndexHit>(nearInfo, map)();
// oppositeInfo = UIndirectList<pointIndexHit>(oppositeInfo, map)();
//}
Foam::label Foam::meshRefinement::generateRays
(
const point& nearPoint,
const vector& nearNormal,
const FixedList<label, 3>& gapInfo,
const volumeType& mode,
const label cLevel,
DynamicField<point>& start,
DynamicField<point>& end
) const
{
label nOldRays = start.size();
if (cLevel >= gapInfo[1] && cLevel < gapInfo[2] && gapInfo[0] > 0)
scalar cellSize = meshCutter_.level0EdgeLength()/pow(2.0, cLevel);
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Calculate gap size
scalar nearGap = gapInfo[0]*cellSize;
const vector& n = nearNormal;
// Situation 'C' above: cell too close. Use surface
// -normal and -point to shoot rays
if (mode == volumeType::OUTSIDE)
{
start.append(nearPoint+1e-6*n);
end.append(nearPoint+nearGap*n);
}
else if (mode == volumeType::INSIDE)
{
start.append(nearPoint-1e-6*n);
end.append(nearPoint-nearGap*n);
}
else if (mode == volumeType::MIXED)
{
start.append(nearPoint+1e-6*n);
end.append(nearPoint+nearGap*n);
start.append(nearPoint-1e-6*n);
end.append(nearPoint-nearGap*n);
}
}
return start.size()-nOldRays;
}
Foam::label Foam::meshRefinement::generateRays
(
const bool useSurfaceNormal,
const point& nearPoint,
const vector& nearNormal,
const FixedList<label, 3>& gapInfo,
const volumeType& mode,
const point& cc,
const label cLevel,
DynamicField<point>& start,
DynamicField<point>& end,
DynamicField<scalar>& gapSize,
DynamicField<point>& start2,
DynamicField<point>& end2,
DynamicField<scalar>& gapSize2
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
) const
{
// We want to handle the following cases:
// - surface: small gap (marked with 'surface'). gap might be
// on inside or outside of surface.
// - A: cell well inside the gap.
// - B: cell well outside the gap.
// - C: cell straddling the gap. cell centre might be inside
// or outside
//
// +---+
// | B |
// +---+
//
// +------+
// | |
// | C |
// --------|------|----surface
// +------+
//
// +---+
// | A |
// +---+
//
//
// --------------------surface
//
// So:
// - find nearest point on surface
// - in situation A,B decide if on wanted side of surface
// - detect if locally a gap (and the cell inside the gap) by
// shooting a ray from the point on the surface in the direction
// of
// - A,B: the cell centre
// - C: the surface normal and/or negative surface normal
// and see we hit anything
//
// Variations of this scheme:
// - always shoot in the direction of the surface normal. This needs
// then an additional check to make sure the cell centre is
// somewhere inside the gap
// - instead of ray shooting use a 'constrained' nearest search
// by e.g. looking inside a search cone (implemented in searchCone).
// The problem with this constrained nearest is that it still uses
// the absolute nearest point on each triangle and only afterwards
// checks if it is inside the search cone.
// Decide which near points are good:
// - with updated minLevel and maxLevel and nearGap make sure
// the cell is still a candidate
// NOTE: inside the gap the nearest point on the surface will
// be HALF the gap size - otherwise we would have found
// a point on the opposite side
// - if the mode is both sides
// - or if the hit is inside the current cell (situation 'C',
// magV < 0.5cellSize)
// - or otherwise if on the correct side
label nOldRays = start.size();
if (cLevel >= gapInfo[1] && cLevel < gapInfo[2] && gapInfo[0] > 0)
scalar cellSize = meshCutter_.level0EdgeLength()/pow(2.0, cLevel);
// Calculate gap size
scalar nearGap = gapInfo[0]*cellSize;
// Distance to nearest
vector v(cc-nearPoint);
scalar magV = mag(v);
if (useSurfaceNormal || magV < 0.5*cellSize)
{
const vector& n = nearNormal;
// Situation 'C' above: cell too close. Use surface
// -normal and -point to shoot rays
if (mode == volumeType::OUTSIDE)
{
start.append(nearPoint+1e-6*n);
end.append(nearPoint+nearGap*n);
gapSize.append(nearGap);
// Second vector so we get pairs of intersections
start2.append(nearPoint+1e-6*n);
end2.append(nearPoint-1e-6*n);
gapSize2.append(gapSize.last());
}
else if (mode == volumeType::INSIDE)
{
start.append(nearPoint-1e-6*n);
end.append(nearPoint-nearGap*n);
gapSize.append(nearGap);
// Second vector so we get pairs of intersections
start2.append(nearPoint-1e-6*n);
end2.append(nearPoint+1e-6*n);
gapSize2.append(gapSize.last());
}
else if (mode == volumeType::MIXED)
{
// Do both rays:
// Outside
{
start.append(nearPoint+1e-6*n);
end.append(nearPoint+nearGap*n);
gapSize.append(nearGap);
// Second vector so we get pairs of intersections
start2.append(nearPoint+1e-6*n);
end2.append(nearPoint-1e-6*n);
gapSize2.append(gapSize.last());
}
// Inside
{
start.append(nearPoint-1e-6*n);
end.append(nearPoint-nearGap*n);
gapSize.append(nearGap);
// Second vector so we get pairs of intersections
start2.append(nearPoint-1e-6*n);
end2.append(nearPoint+1e-6*n);
gapSize2.append(gapSize.last());
}
}
}
else
{
// Situation 'A' or 'B' above: cell well away. Test if
// cell on correct side of surface and shoot ray through
// cell centre. Note: no need to shoot ray in other
// direction since we're trying to detect cell inside
// the gap.
scalar s = (v&nearNormal);
if
(
(mode == volumeType::MIXED)
|| (mode == volumeType::OUTSIDE && s > SMALL)
|| (mode == volumeType::INSIDE && s < -SMALL)
)
{
//// Use single vector through cell centre
//vector n(v/(magV+ROOTVSMALL));
//
//start.append(cc);
//end.append(cc+nearGap*n);
//gapSize.append(nearGap);
//
//start2.append(cc);
//end2.append(cc-nearGap*n);
//gapSize2.append(nearGap);
//// Shoot some rays through the cell centre
//// X-direction:
//start.append(cc);
//end.append(cc+nearGap*vector(1, 0, 0));
//gapSize.append(nearGap);
//
//start2.append(cc);
//end2.append(cc-nearGap*vector(1, 0, 0));
//gapSize2.append(nearGap);
//
//// Y-direction:
//start.append(cc);
//end.append(cc+nearGap*vector(0, 1, 0));
//gapSize.append(nearGap);