Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
-------------------------------------------------------------------------------
Copyright (C) 2015-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "noiseModel.H"
#include "functionObject.H"
#include "fft.H"
#include "OFstream.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(noiseModel, 0);
defineRunTimeSelectionTable(noiseModel, dictionary);
}
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
const Foam::Enum<Foam::noiseModel::weightingType>
Foam::noiseModel::weightingTypeNames_
({
{weightingType::none, "dB"},
{weightingType::dBA, "dBA"},
{weightingType::dBB, "dBB"},
{weightingType::dBC, "dBC"},
{weightingType::dBD, "dBD"},
});
void Foam::noiseModel::setOctaveBands
(
const scalarField& f,
const scalar fLower,
const scalar fUpper,
const scalar octave,
labelList& fBandIDs,
scalarField& fCentre
)
{
// Set the indices of to the lower frequency bands for the input frequency
// range. Ensure that the centre frequency passes though 1000 Hz
// Low frequency bound given by:
// fLow = f0*(2^(0.5*bandI/octave))
// Initial (lowest centre frequency)
scalar fTest = 15.625;
const scalar fRatio = pow(2, 1.0/octave);
const scalar fRatioL2C = pow(2, 0.5/octave);
// IDs of band IDs
labelHashSet bandIDs(f.size());
// Centre frequencies
DynamicList<scalar> fc;
DynamicList<scalar> missedBins;
// Convert to lower band limit
fTest /= fRatioL2C;

Andrew Heather
committed
while (fTest < fLower)
{
fTest *= fRatio;
}
forAll(f, i)
{
if (f[i] >= fTest)
{
// Advance band if appropriate
while (f[i] > fTest)
{
if (stepi) missedBins.append(fTest/fRatio*fRatioL2C);
fTest *= fRatio;
}
fTest /= fRatio;
if (bandIDs.insert(i))
{
// Also store (next) centre frequency
fc.append(fTest*fRatioL2C);
}
fTest *= fRatio;
if (fTest > fUpper)
{
break;
}
}
}
fBandIDs = bandIDs.sortedToc();
if (missedBins.size())
{
label nMiss = missedBins.size();
label nTotal = nMiss + fc.size() - 1;
WarningInFunction
<< "Empty bands found: " << nMiss << " of " << nTotal
<< " with centre frequencies " << flatOutput(missedBins)
<< endl;
}
if (fc.size())
{
// Remove the last centre frequency (beyond upper frequency limit)
fCentre.transfer(fc);
}
}
namespace Foam
{
tmp<scalarField> safeLog10(const scalarField& fld)
{
auto tresult = tmp<scalarField>::New(fld.size(), -GREAT);
auto& result = tresult.ref();
forAll(result, i)
{
if (fld[i] > 0)
{
result[i] = log10(fld[i]);
}
}
return tresult;
}
}
// * * * * * * * * * * * * * * * Local Functions * * * * * * * * * * * * * * //
namespace Foam
{
// Get bool option (eg, read/write) and provide Info feedback
static void readWriteOption
(
const dictionary& dict,
const word& lookup,
bool& option
Info<< " " << lookup << ": " << (option ? "yes" : "no") << endl;
} // End namespace Foam
// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //
Foam::scalar Foam::noiseModel::checkUniformTimeStep
(
const scalarList& times
) const
{
scalar deltaT = 1;
if (times.size() > 1)
{
// Uniform time step
deltaT = (times.back() - times.front())/scalar(times.size() - 1);
bool nonUniform = false;
for (label i = 1; i < times.size() && !nonUniform; ++i)
const scalar dT = times[i] - times[i-1];
nonUniform = (mag(dT/deltaT - 1) > 1e-8);
}
if (nonUniform)
{
WarningInFunction
<< "Detected non-uniform time step:"
<< " resulting FFT may be incorrect"
<< " (or the deltaT is just very small): " << deltaT
<< endl;
}
}
else
{
FatalErrorInFunction
<< "Unable to create FFT with 0 or 1 values"
<< exit(FatalError);
}
return deltaT;
}
Andrew Heather
committed
bool Foam::noiseModel::validateBounds(const scalarList& p) const
{
forAll(p, i)
{
if ((p[i] < minPressure_) || (p[i] > maxPressure_))
{
WarningInFunction
<< "Pressure data at position " << i
<< " is outside of permitted bounds:" << nl
<< " pressure: " << p[i] << nl
<< " minimum pressure: " << minPressure_ << nl
<< " maximum pressure: " << maxPressure_ << nl
<< endl;
return false;
}
}
return true;
}
Foam::fileName Foam::noiseModel::baseFileDir(const label dataseti) const
return
(
/ type()
/ ("input" + Foam::name(dataseti))
);
void Foam::noiseModel::writeFileHeader
(
Ostream& os,
const string& x,
const string& y,
const UList<Tuple2<string, token>>& headerValues
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
) const
{
writeHeader(os, x + " vs " + y);
writeHeaderValue(os, "Lower frequency", fLower_);
writeHeaderValue(os, "Upper frequency", fUpper_);
writeHeaderValue(os, "Window model", windowModelPtr_->type());
writeHeaderValue(os, "Window number", windowModelPtr_->nWindow());
writeHeaderValue(os, "Window samples", windowModelPtr_->nSamples());
writeHeaderValue(os, "Window overlap %", windowModelPtr_->overlapPercent());
writeHeaderValue(os, "dBRef", dBRef_);
for (const auto& hv : headerValues)
{
writeHeaderValue(os, hv.first(), hv.second());
}
writeCommented(os, x.substr(0, x.find(' ')));
writeTabbed(os, y.substr(0, y.find(' ')));
os << nl;
}
void Foam::noiseModel::writeFreqDataToFile
(
Ostream& os,
const scalarField& f,
const scalarField& fx
) const
{
forAll(f, i)
{
if (f[i] >= fLower_ && f[i] <= fUpper_)
{
os << f[i] << tab << fx[i] << nl;
}
}
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::uniformFrequencies
(

Andrew Heather
committed
const scalar deltaT,
const bool check
) const
{
const auto& window = windowModelPtr_();
const label N = window.nSamples();
auto tf = tmp<scalarField>::New(N/2 + 1, Zero);
auto& f = tf.ref();
const scalar deltaf = 1.0/(N*deltaT);

Andrew Heather
committed
label nFreq = 0;
forAll(f, i)
{
f[i] = i*deltaf;

Andrew Heather
committed
if (f[i] > fLower_ && f[i] < fUpper_)
{
++nFreq;
}
}
if (check && nFreq == 0)
{
WarningInFunction
<< "No frequencies found in range "
<< fLower_ << " to " << fUpper_
<< endl;
}
return tf;
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::octaves
(
const scalarField& data,
const scalarField& f,
const labelUList& freqBandIDs
) const
{
if (freqBandIDs.size() < 2)
{
WarningInFunction
<< "Octave frequency bands are not defined "
<< "- skipping octaves calculation"
<< endl;

Andrew Heather
committed
return tmp<scalarField>::New();

Andrew Heather
committed
auto toctData = tmp<scalarField>::New(freqBandIDs.size() - 1, Zero);
auto& octData = toctData.ref();

Andrew Heather
committed
bitSet bandUsed(freqBandIDs.size() - 1);
for (label bandI = 0; bandI < freqBandIDs.size() - 1; ++bandI)
{
label fb0 = freqBandIDs[bandI];
label fb1 = freqBandIDs[bandI+1];
if (fb0 == fb1) continue;
for (label freqI = fb0; freqI < fb1; ++freqI)
{
label f0 = f[freqI];
label f1 = f[freqI + 1];
scalar dataAve = 0.5*(data[freqI] + data[freqI + 1]);
octData[bandI] += dataAve*(f1 - f0);

Andrew Heather
committed
bandUsed.set(bandI);

Andrew Heather
committed
bandUsed.flip();
labelList bandUnused = bandUsed.sortedToc();
if (bandUnused.size())
{
WarningInFunction
<< "Empty bands found: " << bandUnused.size() << " of "
<< bandUsed.size() << endl;
}
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
return toctData;
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::Pf(const scalarField& p) const
{
if (planInfo_.active)
{
if (p.size() != planInfo_.windowSize)
{
FatalErrorInFunction
<< "Expected pressure data to have " << planInfo_.windowSize
<< " values, but received " << p.size() << " values"
<< abort(FatalError);
}
List<double>& in = planInfo_.in;
const List<double>& out = planInfo_.out;
forAll(in, i)
{
in[i] = p[i];
}
::fftw_execute(planInfo_.plan);
const label n = planInfo_.windowSize;
const label nBy2 = n/2;
auto tresult = tmp<scalarField>::New(nBy2 + 1);
auto& result = tresult.ref();
// 0 th value = DC component
// nBy2 th value = real only if n is even
result[0] = out[0];
for (label i = 1; i <= nBy2; ++i)
{
const auto re = out[i];
const auto im = out[n - i];
result[i] = sqrt(re*re + im*im);
}
return tresult;
}
return mag(fft::realTransform1D(p));
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::meanPf(const scalarField& p) const
{
const auto& window = windowModelPtr_();
const label N = window.nSamples();
const label nWindow = window.nWindow();
auto tmeanPf = tmp<scalarField>::New(N/2 + 1, Zero);
auto& meanPf = tmeanPf.ref();
for (label windowI = 0; windowI < nWindow; ++windowI)
{
meanPf += Pf(window.apply<scalar>(p, windowI));
}
meanPf /= scalar(nWindow);
return tmeanPf;
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::RMSmeanPf
(
const scalarField& p
) const
{
const auto& window = windowModelPtr_();
const label N = window.nSamples();
const label nWindow = window.nWindow();
scalarField RMSMeanPf(N/2 + 1, Zero);
for (label windowI = 0; windowI < nWindow; ++windowI)
{
RMSMeanPf += sqr(Pf(window.apply<scalar>(p, windowI)));
}
return sqrt(RMSMeanPf/scalar(nWindow))/scalar(N);
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::PSDf
(
const scalarField& p,
const scalar deltaT
) const
{
const auto& window = windowModelPtr_();
const label N = window.nSamples();
const label nWindow = window.nWindow();
auto tpsd = tmp<scalarField>::New(N/2 + 1, Zero);
auto& psd = tpsd.ref();
for (label windowI = 0; windowI < nWindow; ++windowI)
{
psd += sqr(Pf(window.apply<scalar>(p, windowI)));
}
scalar fs = 1.0/deltaT;
psd /= scalar(nWindow)*fs*N;
// Scaling due to use of 1-sided FFT
// Note: do not scale DC component
psd *= 2;
psd.first() /= 2;
psd.last() /= 2;
if (debug)
{
Pout<< "Average PSD: " << average(psd) << endl;
}
return tpsd;
}
Foam::scalar Foam::noiseModel::RAf(const scalar f) const
{
const scalar c1 = sqr(12194.0);
const scalar c2 = sqr(20.6);
const scalar c3 = sqr(107.7);
const scalar c4 = sqr(739.9);
const scalar f2 = f*f;
return
c1*sqr(f2)
/(
(f2 + c2)*sqrt((f2 + c3)*(f2 + c4))*(f2 + c1)
);
}
Foam::scalar Foam::noiseModel::gainA(const scalar f) const
{
if (f < SMALL)
{
return 0;
}
return 20*log10(RAf(f)) - 20*log10(RAf(1000));
}
Foam::scalar Foam::noiseModel::RBf(const scalar f) const
{
const scalar c1 = sqr(12194.0);
const scalar c2 = sqr(20.6);
const scalar c3 = sqr(158.5);
const scalar f2 = f*f;
return
c1*f2*f
/(
(f2 + c2)*sqrt(f2 + c3)*(f2 + c1)
);
}
Foam::scalar Foam::noiseModel::gainB(const scalar f) const
{
if (f < SMALL)
{
return 0;
}
return 20*log10(RBf(f)) - 20*log10(RBf(1000));
}
Foam::scalar Foam::noiseModel::RCf(const scalar f) const
{
const scalar c1 = sqr(12194.0);
const scalar c2 = sqr(20.6);
const scalar f2 = f*f;
return c1*f2/((f2 + c2)*(f2 + c1));
}
Foam::scalar Foam::noiseModel::gainC(const scalar f) const
{
if (f < SMALL)
{
return 0;
}
return 20*log10(RCf(f)) - 20*log10(RCf(1000));
}
Foam::scalar Foam::noiseModel::RDf(const scalar f) const
{
const scalar f2 = f*f;
const scalar hf =
(sqr(1037918.48 - f2) + 1080768.16*f2)
/(sqr(9837328 - f2) + 11723776*f2);
return
f/6.8966888496476e-5*Foam::sqrt(hf/((f2 + 79919.29)*(f2 + 1345600)));
}
Foam::scalar Foam::noiseModel::gainD(const scalar f) const
{
if (f < SMALL)
{
return 0;
}
return 20*log10(RDf(f));
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::noiseModel::noiseModel
(
const dictionary& dict,
const objectRegistry& obr,
const word& name,
const bool readFields
)
functionObjects::writeFile(obr, "noise"),
rhoRef_(1),
nSamples_(65536),
fLower_(25),
fUpper_(10000),
sampleFreq_(0),
startTime_(0),
windowModelPtr_(),
SPLweighting_(weightingType::none),
Andrew Heather
committed
minPressure_(-0.5*VGREAT),
maxPressure_(0.5*VGREAT),
outputPrefix_(),
writePrmsf_(true),
writeSPL_(true),
writePSD_(true),
writePSDf_(true),
writeOctaves_(true),
planInfo_()
planInfo_.active = false;
if (readFields)
{
read(dict);
}
if (debug)
{
writeWeightings();
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::noiseModel::read(const dictionary& dict)
{
if (!functionObjects::writeFile::read(dict))
{
return false;
}
// Re-assign defaults (to avoid stickiness)
fLower_ = 25;
fUpper_ = 10000;
sampleFreq_ = 0;
dict.readIfPresent("rhoRef", rhoRef_);
dict.readIfPresent("N", nSamples_);
dict.readIfPresentCompat("minFreq", {{"fl", 2312}}, fLower_);
dict.readIfPresentCompat("maxFreq", {{"fu", 2312}}, fUpper_);
dict.readIfPresent("sampleFreq", sampleFreq_);
dict.readIfPresent("startTime", startTime_);
Andrew Heather
committed
dict.readIfPresent("minPressure", minPressure_);
dict.readIfPresent("maxPressure", maxPressure_);
dict.readIfPresent("outputPrefix", outputPrefix_);
if (fLower_ < 0)
{
FatalIOErrorInFunction(dict)
<< "Lower frequency bound must be greater than zero"
<< exit(FatalIOError);
}
if (fUpper_ < 0)
{
FatalIOErrorInFunction(dict)
<< "Upper frequency bound must be greater than zero"
<< exit(FatalIOError);
}
if (fUpper_ < fLower_)
{
FatalIOErrorInFunction(dict)
<< "Upper frequency bound (" << fUpper_
<< ") must be greater than lower frequency bound ("
<< fLower_ << ")"
<< exit(FatalIOError);
}
Info<< " Frequency bounds:" << nl
<< " lower: " << fLower_ << nl
<< " upper: " << fUpper_ << nl
<< " sample: ";
if (sampleFreq_ > 0)
{
Info<< sampleFreq_ << nl;
}
else
{
Info<< "auto" << nl;
}
weightingTypeNames_.readIfPresent("SPLweighting", dict, SPLweighting_);
Info<< " Weighting: " << weightingTypeNames_[SPLweighting_] << endl;
if (dict.readIfPresent("dBRef", dBRef_))
{
Info<< " Reference for dB calculation: " << dBRef_ << endl;
}
Info<< " Write options:" << endl;
dictionary optDict(dict.subOrEmptyDict("writeOptions"));
readWriteOption(optDict, "writePrmsf", writePrmsf_);
readWriteOption(optDict, "writeSPL", writeSPL_);
readWriteOption(optDict, "writePSD", writePSD_);
readWriteOption(optDict, "writePSDf", writePSDf_);
readWriteOption(optDict, "writeOctaves", writeOctaves_);
windowModelPtr_ = windowModel::New(dict, nSamples_);
cleanFFTW();
const label windowSize = windowModelPtr_->nSamples();
if (windowSize > 1)
{
planInfo_.active = true;
planInfo_.windowSize = windowSize;
planInfo_.in.setSize(windowSize);
planInfo_.out.setSize(windowSize);
// Using real to half-complex fftw 'kind'
planInfo_.plan =
fftw_plan_r2r_1d
(
windowSize,
planInfo_.in.data(),
planInfo_.out.data(),
FFTW_R2HC,
windowSize <= 8192 ? FFTW_MEASURE : FFTW_ESTIMATE
);
}
Info<< endl;
Andrew Heather
committed
return true;
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::PSD
(
const scalarField& PSDf
) const
{
return 10*safeLog10(PSDf/sqr(dBRef_));
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::SPL
(
const scalarField& Prms2,
const scalar f
) const
{
tmp<scalarField> tspl(10*safeLog10(Prms2/sqr(dBRef_)));
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
scalarField& spl = tspl.ref();
switch (SPLweighting_)
{
case weightingType::none:
{
break;
}
case weightingType::dBA:
{
spl += gainA(f);
break;
}
case weightingType::dBB:
{
spl += gainB(f);
break;
}
case weightingType::dBC:
{
spl += gainC(f);
break;
}
case weightingType::dBD:
{
spl += gainD(f);
break;
}
default:
{
FatalErrorInFunction
<< "Unknown weighting " << weightingTypeNames_[SPLweighting_]
<< abort(FatalError);
}
}
return tspl;
}
Foam::tmp<Foam::scalarField> Foam::noiseModel::SPL
(
const scalarField& Prms2,
const scalarField& f
) const
{
tmp<scalarField> tspl(10*safeLog10(Prms2/sqr(dBRef_)));
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
scalarField& spl = tspl.ref();
switch (SPLweighting_)
{
case weightingType::none:
{
break;
}
case weightingType::dBA:
{
forAll(spl, i)
{
spl[i] += gainA(f[i]);
}
break;
}
case weightingType::dBB:
{
forAll(spl, i)
{
spl[i] += gainB(f[i]);
}
break;
}
case weightingType::dBC:
{
forAll(spl, i)
{
spl[i] += gainC(f[i]);
}
break;
}
case weightingType::dBD:
{
forAll(spl, i)
{
spl[i] += gainD(f[i]);
}
break;
}
default:
{
FatalErrorInFunction
<< "Unknown weighting " << weightingTypeNames_[SPLweighting_]
<< abort(FatalError);
}
}
return tspl;
}
void Foam::noiseModel::cleanFFTW()
{
if (planInfo_.active)
{
planInfo_.active = false;
fftw_destroy_plan(planInfo_.plan);
fftw_cleanup();
}
}
void Foam::noiseModel::writeWeightings() const
{
scalar f0 = 10;
scalar f1 = 20000;
OFstream osA("noiseModel-weight-A");
OFstream osB("noiseModel-weight-B");
OFstream osC("noiseModel-weight-C");
OFstream osD("noiseModel-weight-D");
for (label f = f0; f <= f1; ++f)
{
osA << f << " " << gainA(f) << nl;
osB << f << " " << gainB(f) << nl;
osC << f << " " << gainC(f) << nl;
osD << f << " " << gainD(f) << nl;
}
}
// ************************************************************************* //