An error occurred while loading the file. Please try again.
-
Henry Weller authored
By specifying the optional outside surface emissivity radiative heat transfer to the ambient conditions is enabled. The far-field is assumed to have an emissivity of 1 but this could be made an optional input in the future if needed. Relaxation of the surface temperature is now provided via the optional "relaxation" which aids stability of steady-state runs with strong radiative coupling to the boundary.
104aac5f
externalWallHeatFluxTemperatureFvPatchScalarField.C 13.72 KiB
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "externalWallHeatFluxTemperatureFvPatchScalarField.H"
#include "addToRunTimeSelectionTable.H"
#include "fvPatchFieldMapper.H"
#include "volFields.H"
#include "physicoChemicalConstants.H"
using Foam::constant::physicoChemical::sigma;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<>
const char*
NamedEnum
<
externalWallHeatFluxTemperatureFvPatchScalarField::operationMode,
3
>::names[] =
{
"power",
"flux",
"coefficient"
};
}
const Foam::NamedEnum
<
Foam::externalWallHeatFluxTemperatureFvPatchScalarField::operationMode,
3
> Foam::externalWallHeatFluxTemperatureFvPatchScalarField::operationModeNames;
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::externalWallHeatFluxTemperatureFvPatchScalarField::
externalWallHeatFluxTemperatureFvPatchScalarField
(
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF
)
:
mixedFvPatchScalarField(p, iF),
temperatureCoupledBase(patch(), "undefined", "undefined", "undefined-K"),
mode_(fixedHeatFlux),
Q_(0),
relaxation_(1),
emissivity_(0),
qrRelaxation_(1),
qrName_("undefined-qr"),
thicknessLayers_(),
kappaLayers_()
{
refValue() = 0;
refGrad() = 0;
valueFraction() = 1;
}
Foam::externalWallHeatFluxTemperatureFvPatchScalarField::
externalWallHeatFluxTemperatureFvPatchScalarField
(
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const dictionary& dict
)
:
mixedFvPatchScalarField(p, iF),
temperatureCoupledBase(patch(), dict),
mode_(operationModeNames.read(dict.lookup("mode"))),
Q_(0),
relaxation_(dict.lookupOrDefault<scalar>("relaxation", 1)),
emissivity_(dict.lookupOrDefault<scalar>("emissivity", 0)),
qrRelaxation_(dict.lookupOrDefault<scalar>("qrRelaxation", 1)),
qrName_(dict.lookupOrDefault<word>("qr", "none")),
thicknessLayers_(),
kappaLayers_()
{
switch (mode_)
{
case fixedPower:
{
dict.lookup("Q") >> Q_;
break;
}
case fixedHeatFlux:
{
q_ = scalarField("q", dict, p.size());
break;
}
case fixedHeatTransferCoeff:
{
h_ = scalarField("h", dict, p.size());
Ta_ = scalarField("Ta", dict, p.size());
if (dict.found("thicknessLayers"))
{
dict.lookup("thicknessLayers") >> thicknessLayers_;
dict.lookup("kappaLayers") >> kappaLayers_;
}
break;
}
}
fvPatchScalarField::operator=(scalarField("value", dict, p.size()));
if (qrName_ != "none")
{
if (dict.found("qrPrevious"))
{
qrPrevious_ = scalarField("qrPrevious", dict, p.size());
}
else
{
qrPrevious_.setSize(p.size(), 0);
}
}
if (dict.found("refValue"))
{
// Full restart
refValue() = scalarField("refValue", dict, p.size());
refGrad() = scalarField("refGradient", dict, p.size());
valueFraction() = scalarField("valueFraction", dict, p.size());
}
else
{
// Start from user entered data. Assume fixedValue.
refValue() = *this;
refGrad() = 0;
valueFraction() = 1;
}
}
Foam::externalWallHeatFluxTemperatureFvPatchScalarField::
externalWallHeatFluxTemperatureFvPatchScalarField
(
const externalWallHeatFluxTemperatureFvPatchScalarField& ptf,
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const fvPatchFieldMapper& mapper
)
:
mixedFvPatchScalarField(ptf, p, iF, mapper),
temperatureCoupledBase(patch(), ptf),
mode_(ptf.mode_),
Q_(ptf.Q_),
relaxation_(ptf.relaxation_),
emissivity_(ptf.emissivity_),
qrRelaxation_(ptf.qrRelaxation_),
qrName_(ptf.qrName_),
thicknessLayers_(ptf.thicknessLayers_),
kappaLayers_(ptf.kappaLayers_)
{
switch (mode_)
{
case fixedPower:
{
break;
}
case fixedHeatFlux:
{
q_.autoMap(mapper);
break;
}
case fixedHeatTransferCoeff:
{
h_.autoMap(mapper);
Ta_.autoMap(mapper);
break;
}
}
if (qrName_ != "none")
{
qrPrevious_.autoMap(mapper);
}
}
Foam::externalWallHeatFluxTemperatureFvPatchScalarField::
externalWallHeatFluxTemperatureFvPatchScalarField
(
const externalWallHeatFluxTemperatureFvPatchScalarField& tppsf
)
:
mixedFvPatchScalarField(tppsf),
temperatureCoupledBase(tppsf),
mode_(tppsf.mode_),
Q_(tppsf.Q_),
q_(tppsf.q_),
h_(tppsf.h_),
Ta_(tppsf.Ta_),
relaxation_(tppsf.relaxation_),
emissivity_(tppsf.emissivity_),
qrPrevious_(tppsf.qrPrevious_),
qrRelaxation_(tppsf.qrRelaxation_),
qrName_(tppsf.qrName_),
thicknessLayers_(tppsf.thicknessLayers_),
kappaLayers_(tppsf.kappaLayers_)
{}
Foam::externalWallHeatFluxTemperatureFvPatchScalarField::
externalWallHeatFluxTemperatureFvPatchScalarField
(
const externalWallHeatFluxTemperatureFvPatchScalarField& tppsf,
const DimensionedField<scalar, volMesh>& iF
)
:
mixedFvPatchScalarField(tppsf, iF),
temperatureCoupledBase(patch(), tppsf),
mode_(tppsf.mode_),
Q_(tppsf.Q_),
q_(tppsf.q_),
h_(tppsf.h_),
Ta_(tppsf.Ta_),
relaxation_(tppsf.relaxation_),
emissivity_(tppsf.emissivity_),
qrPrevious_(tppsf.qrPrevious_),
qrRelaxation_(tppsf.qrRelaxation_),
qrName_(tppsf.qrName_),
thicknessLayers_(tppsf.thicknessLayers_),
kappaLayers_(tppsf.kappaLayers_)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::externalWallHeatFluxTemperatureFvPatchScalarField::autoMap
(
const fvPatchFieldMapper& m
)
{
mixedFvPatchScalarField::autoMap(m);
switch (mode_)
{
case fixedPower:
{
break;
}
case fixedHeatFlux:
{
q_.autoMap(m);
break;
}
case fixedHeatTransferCoeff:
{
h_.autoMap(m);
Ta_.autoMap(m);
break;
}
}
if (qrName_ != "none")
{
qrPrevious_.autoMap(m);
}
}
void Foam::externalWallHeatFluxTemperatureFvPatchScalarField::rmap
(
const fvPatchScalarField& ptf,
const labelList& addr
)
{
mixedFvPatchScalarField::rmap(ptf, addr);
const externalWallHeatFluxTemperatureFvPatchScalarField& tiptf =
refCast<const externalWallHeatFluxTemperatureFvPatchScalarField>(ptf);
switch (mode_)
{
case fixedPower:
{
break;
}
case fixedHeatFlux:
{
q_.rmap(tiptf.q_, addr);
break;
}
case fixedHeatTransferCoeff:
{
h_.rmap(tiptf.h_, addr);
Ta_.rmap(tiptf.Ta_, addr);
break;
}
}
if (qrName_ != "none")
{
qrPrevious_.rmap(tiptf.qrPrevious_, addr);
}
}
void Foam::externalWallHeatFluxTemperatureFvPatchScalarField::updateCoeffs()
{
if (updated())
{
return;
}
const scalarField& Tp(*this);
scalarField qr(Tp.size(), 0);
if (qrName_ != "none")
{
qr =
qrRelaxation_
*patch().lookupPatchField<volScalarField, scalar>(qrName_)
+ (1 - qrRelaxation_)*qrPrevious_;
qrPrevious_ = qr;
}
switch (mode_)
{
case fixedPower:
{
refGrad() = (Q_/gSum(patch().magSf()) + qr)/kappa(Tp);
refValue() = 0;
valueFraction() = 0;
break;
}
case fixedHeatFlux:
{
refGrad() = (q_ + qr)/kappa(Tp);
refValue() = 0;
valueFraction() = 0;
break;
}
case fixedHeatTransferCoeff:
{
scalar totalSolidRes = 0;
if (thicknessLayers_.size())
{
forAll(thicknessLayers_, iLayer)
{
const scalar l = thicknessLayers_[iLayer];
if (kappaLayers_[iLayer] > 0)
{
totalSolidRes += l/kappaLayers_[iLayer];
}
}
}
scalarField hp(1/(1/h_ + totalSolidRes));
scalarField hpTa(hp*Ta_);
if (emissivity_ > 0)
{
// Evaluate the radiative flux to the environment
// from the surface temperature ...
if (totalSolidRes > 0)
{
// ... including the effect of the solid wall thermal
// resistance
scalarField TpLambda(h_/(h_ + 1/totalSolidRes));
scalarField Ts(TpLambda*Tp + (1 - TpLambda)*Ta_);
scalarField lambdaTa4(pow4((1 - TpLambda)*Ta_));
hp += emissivity_*sigma.value()*(pow4(Ts) - lambdaTa4)/Tp;
hpTa += sigma.value()*(emissivity_*lambdaTa4 + pow4(Ta_));
}
else
{
// ... if there is no solid wall thermal resistance use
// the current wall temperature
hp += emissivity_*sigma.value()*pow3(Tp);
hpTa += sigma.value()*pow4(Ta_);
}
}
const scalarField kappaDeltaCoeffs
(
this->kappa(Tp)*patch().deltaCoeffs()
);
refGrad() = 0;
forAll(Tp, i)
{
if (qr[i] < 0)
{
const scalar hpmqr = hp[i] - qr[i]/Tp[i];
refValue()[i] = hpTa[i]/hpmqr;
valueFraction()[i] = hpmqr/(hpmqr + kappaDeltaCoeffs[i]);
}
else
{
refValue()[i] = (hpTa[i] + qr[i])/hp[i];
valueFraction()[i] = hp[i]/(hp[i] + kappaDeltaCoeffs[i]);
}
}
break;
}
}
valueFraction() = relaxation_*valueFraction() + (1 - relaxation_);
refValue() = relaxation_*refValue() + (1 - relaxation_)*Tp;
mixedFvPatchScalarField::updateCoeffs();
if (debug)
{
const scalar Q = gSum(kappa(Tp)*patch().magSf()*snGrad());
Info<< patch().boundaryMesh().mesh().name() << ':'
<< patch().name() << ':'
<< this->internalField().name() << " :"
<< " heat transfer rate:" << Q
<< " walltemperature "
<< " min:" << gMin(*this)
<< " max:" << gMax(*this)
<< " avg:" << gAverage(*this)
<< endl;
}
}
void Foam::externalWallHeatFluxTemperatureFvPatchScalarField::write
(
Ostream& os
) const
{
fvPatchScalarField::write(os);
os.writeKeyword("mode")
<< operationModeNames[mode_] << token::END_STATEMENT << nl;
temperatureCoupledBase::write(os);
switch (mode_)
{
case fixedPower:
{
os.writeKeyword("Q")
<< Q_ << token::END_STATEMENT << nl;
break;
}
case fixedHeatFlux:
{
q_.writeEntry("q", os);
break;
}
case fixedHeatTransferCoeff:
{
h_.writeEntry("h", os);
Ta_.writeEntry("Ta", os);
if (relaxation_ < 1)
{
os.writeKeyword("relaxation")
<< relaxation_ << token::END_STATEMENT << nl;
}
if (emissivity_ > 0)
{
os.writeKeyword("emissivity")
<< emissivity_ << token::END_STATEMENT << nl;
}
if (thicknessLayers_.size())
{
thicknessLayers_.writeEntry("thicknessLayers", os);
kappaLayers_.writeEntry("kappaLayers", os);
}
break;
}
}
os.writeKeyword("qr")<< qrName_ << token::END_STATEMENT << nl;
if (qrName_ != "none")
{
os.writeKeyword("qrRelaxation")
<< qrRelaxation_ << token::END_STATEMENT << nl;
qrPrevious_.writeEntry("qrPrevious", os);
}
refValue().writeEntry("refValue", os);
refGrad().writeEntry("refGradient", os);
valueFraction().writeEntry("valueFraction", os);
writeEntry("value", os);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
makePatchTypeField
(
fvPatchScalarField,
externalWallHeatFluxTemperatureFvPatchScalarField
);
}
// ************************************************************************* //