-
Vaggelis Papoutsis authored
The adjoint library is enhanced with new functionality enabling automated shape optimisation loops. A parameterisation scheme based on volumetric B-Splines is introduced, the control points of which act as the design variables in the optimisation loop [1, 2]. The control points of the volumetric B-Splines boxes can be defined in either Cartesian or cylindrical coordinates. The entire loop (solution of the flow and adjoint equations, computation of sensitivity derivatives, update of the design variables and mesh) is run within adjointOptimisationFoam. A number of methods to update the design variables are implemented, including popular Quasi-Newton methods like BFGS and methods capable of handling constraints like loop using the SQP or constraint projection. The software was developed by PCOpt/NTUA and FOSS GP, with contributions from Dr. Evangelos Papoutsis-Kiachagias, Konstantinos Gkaragounis, Professor Kyriakos Giannakoglou, Andy Heather [1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer, K.C. Giannakoglou: 'Noise Reduction in Car Aerodynamics using a Surrogate Objective Function and the Continuous Adjoint Method with Wall Functions', Computers & Fluids, 122:223-232, 2015 [2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou, K. Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape optimization of cars based on continuous adjoint’, Structural and Multidisciplinary Optimization, 59(2):675–694, 2019
Vaggelis Papoutsis authoredThe adjoint library is enhanced with new functionality enabling automated shape optimisation loops. A parameterisation scheme based on volumetric B-Splines is introduced, the control points of which act as the design variables in the optimisation loop [1, 2]. The control points of the volumetric B-Splines boxes can be defined in either Cartesian or cylindrical coordinates. The entire loop (solution of the flow and adjoint equations, computation of sensitivity derivatives, update of the design variables and mesh) is run within adjointOptimisationFoam. A number of methods to update the design variables are implemented, including popular Quasi-Newton methods like BFGS and methods capable of handling constraints like loop using the SQP or constraint projection. The software was developed by PCOpt/NTUA and FOSS GP, with contributions from Dr. Evangelos Papoutsis-Kiachagias, Konstantinos Gkaragounis, Professor Kyriakos Giannakoglou, Andy Heather [1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer, K.C. Giannakoglou: 'Noise Reduction in Car Aerodynamics using a Surrogate Objective Function and the Continuous Adjoint Method with Wall Functions', Computers & Fluids, 122:223-232, 2015 [2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou, K. Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape optimization of cars based on continuous adjoint’, Structural and Multidisciplinary Optimization, 59(2):675–694, 2019
displacementMethodelasticityMotionSolver.H 3.80 KiB
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2007-2019 PCOpt/NTUA
Copyright (C) 2013-2019 FOSS GP
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::displacementMethodelasticityMotionSolver
Description
Wrapper class for the elasticityMotionSolver motion solver
SourceFiles
displacementMethodelasticityMotionSolver.C
\*---------------------------------------------------------------------------*/
#ifndef displacementMethodelasticityMotionSolver_H
#define displacementMethodelasticityMotionSolver_H
#include "displacementMethod.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class displacementMethodelasticityMotionSolver Declaration
\*---------------------------------------------------------------------------*/
class displacementMethodelasticityMotionSolver
:
public displacementMethod
{
protected:
// Protected data
pointVectorField& pointMotionU_;
volVectorField& cellMotionU_;
bool resetFields_;
private:
// Private Member Functions
//- Disallow default bitwise copy construct
displacementMethodelasticityMotionSolver
(
const displacementMethodelasticityMotionSolver&
) = delete;
//- Disallow default bitwise assignment
void operator=
(
const displacementMethodelasticityMotionSolver&
) = delete;
public:
//- Runtime type information
TypeName("displacementMethodelasticityMotionSolver");
// Constructors
//- Construct from components
displacementMethodelasticityMotionSolver
(
fvMesh& mesh,
const labelList& patchIDs
);
//- Destructor
virtual ~displacementMethodelasticityMotionSolver() = default;
// Member Functions
//- Set motion filed related to model based on given motion
void setMotionField(const pointVectorField& pointMovement);
//- Set motion filed related to model based on given motion
void setMotionField(const volVectorField& cellMovement);
//- Set control field as a vectorField. For methods working with
//- parameters (RBF etc)
void setControlField(const vectorField& controlField);
//- Set control field as a vectorField. For methods working with
//- parameters (RBF etc)
void setControlField(const scalarField& controlField);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //