-
Andrew Heather authoredAndrew Heather authored
polyMesh.C 26.87 KiB
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "polyMesh.H"
#include "Time.H"
#include "cellIOList.H"
#include "SubList.H"
#include "wedgePolyPatch.H"
#include "emptyPolyPatch.H"
#include "globalMeshData.H"
#include "processorPolyPatch.H"
#include "OSspecific.H"
#include "demandDrivenData.H"
#include "polyMeshTetDecomposition.H"
#include "pointMesh.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::polyMesh, 0);
Foam::word Foam::polyMesh::defaultRegion = "region0";
Foam::word Foam::polyMesh::meshSubDir = "polyMesh";
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::polyMesh::calcDirections() const
{
for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
{
solutionD_[cmpt] = 1;
}
// Knock out empty and wedge directions. Note:they will be present on all
// domains.
label nEmptyPatches = 0;
label nWedgePatches = 0;
vector emptyDirVec = vector::zero;
vector wedgeDirVec = vector::zero;
forAll(boundaryMesh(), patchi)
{
if (boundaryMesh()[patchi].size())
{
if (isA<emptyPolyPatch>(boundaryMesh()[patchi]))
{
nEmptyPatches++;
emptyDirVec += sum(cmptMag(boundaryMesh()[patchi].faceAreas()));
}
else if (isA<wedgePolyPatch>(boundaryMesh()[patchi]))
{
const wedgePolyPatch& wpp = refCast<const wedgePolyPatch>
(
boundaryMesh()[patchi]
);
nWedgePatches++;
wedgeDirVec += cmptMag(wpp.centreNormal());
}
}
}
reduce(nEmptyPatches, maxOp<label>());
reduce(nWedgePatches, maxOp<label>());
if (nEmptyPatches)
{
reduce(emptyDirVec, sumOp<vector>());
emptyDirVec /= mag(emptyDirVec);
for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
{
if (emptyDirVec[cmpt] > 1e-6)
{
solutionD_[cmpt] = -1;
}
else
{
solutionD_[cmpt] = 1;
}
}
}
// Knock out wedge directions
geometricD_ = solutionD_;
if (nWedgePatches)
{
reduce(wedgeDirVec, sumOp<vector>());
wedgeDirVec /= mag(wedgeDirVec);
for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
{
if (wedgeDirVec[cmpt] > 1e-6)
{
geometricD_[cmpt] = -1;
}
else
{
geometricD_[cmpt] = 1;
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::polyMesh::polyMesh(const IOobject& io)
:
objectRegistry(io),
primitiveMesh(),
points_
(
IOobject
(
"points",
time().findInstance(meshDir(), "points"),
meshSubDir,
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
),
faces_
(
IOobject
(
"faces",
time().findInstance(meshDir(), "faces"),
meshSubDir,
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
),
owner_
(
IOobject
(
"owner",
time().findInstance(meshDir(), "faces"),
meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
)
),
neighbour_
(
IOobject
(
"neighbour",
time().findInstance(meshDir(), "faces"),
meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
)
),
clearedPrimitives_(false),
boundary_
(
IOobject
(
"boundary",
time().findInstance(meshDir(), "boundary"),
meshSubDir,
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
*this
),
bounds_(points_),
geometricD_(Vector<label>::zero),
solutionD_(Vector<label>::zero),
tetBasePtIsPtr_(NULL),
pointZones_
(
IOobject
(
"pointZones",
time().findInstance
(
meshDir(),
"pointZones",
IOobject::READ_IF_PRESENT
),
meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
*this
),
faceZones_
(
IOobject
(
"faceZones",
time().findInstance
(
meshDir(),
"faceZones",
IOobject::READ_IF_PRESENT
),
meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
*this
),
cellZones_
(
IOobject
(
"cellZones",
time().findInstance
(
meshDir(),
"cellZones",
IOobject::READ_IF_PRESENT
),
meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
*this
),
globalMeshDataPtr_(NULL),
moving_(false),
changing_(false),
curMotionTimeIndex_(time().timeIndex()),
oldPointsPtr_(NULL)
{
if (exists(owner_.objectPath()))
{
initMesh();
}
else
{
cellCompactIOList cLst
(
IOobject
(
"cells",
time().findInstance(meshDir(), "cells"),
meshSubDir,
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
// Set the primitive mesh
initMesh(cLst);
owner_.write();
neighbour_.write();
}
// Calculate topology for the patches (processor-processor comms etc.)
boundary_.updateMesh();
// Calculate the geometry for the patches (transformation tensors etc.)
boundary_.calcGeometry();
// Warn if global empty mesh
if (returnReduce(nPoints(), sumOp<label>()) == 0)
{
WarningIn("polyMesh(const IOobject&)")
<< "no points in mesh" << endl;
}
if (returnReduce(nCells(), sumOp<label>()) == 0)
{
WarningIn("polyMesh(const IOobject&)")
<< "no cells in mesh" << endl;
}
}
Foam::polyMesh::polyMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<labelList>& owner,
const Xfer<labelList>& neighbour,
const bool syncPar
)
:
objectRegistry(io),
primitiveMesh(),
points_
(
IOobject
(
"points",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
points
),
faces_
(
IOobject
(
"faces",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
faces
),
owner_
(
IOobject
(
"owner",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
owner
),
neighbour_
(
IOobject
(
"neighbour",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
neighbour
),
clearedPrimitives_(false),
boundary_
(
IOobject
(
"boundary",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
*this,
0
),
bounds_(points_, syncPar),
geometricD_(Vector<label>::zero),
solutionD_(Vector<label>::zero),
tetBasePtIsPtr_(NULL),
pointZones_
(
IOobject
(
"pointZones",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
*this,
0
),
faceZones_
(
IOobject
(
"faceZones",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
*this,
0
),
cellZones_
(
IOobject
(
"cellZones",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
*this,
0
),
globalMeshDataPtr_(NULL),
moving_(false),
changing_(false),
curMotionTimeIndex_(time().timeIndex()),
oldPointsPtr_(NULL)
{
// Check if the faces and cells are valid
forAll(faces_, faceI)
{
const face& curFace = faces_[faceI];
if (min(curFace) < 0 || max(curFace) > points_.size())
{
FatalErrorIn
(
"polyMesh::polyMesh\n"
"(\n"
" const IOobject& io,\n"
" const pointField& points,\n"
" const faceList& faces,\n"
" const cellList& cells\n"
")\n"
) << "Face " << faceI << "contains vertex labels out of range: "
<< curFace << " Max point index = " << points_.size()
<< abort(FatalError);
}
}
// Set the primitive mesh
initMesh();
}
Foam::polyMesh::polyMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<cellList>& cells,
const bool syncPar
)
:
objectRegistry(io),
primitiveMesh(),
points_
(
IOobject
(
"points",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
points
),
faces_
(
IOobject
(
"faces",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
faces
),
owner_
(
IOobject
(
"owner",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
0
),
neighbour_
(
IOobject
(
"neighbour",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
0
),
clearedPrimitives_(false),
boundary_
(
IOobject
(
"boundary",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
*this,
0
),
bounds_(points_, syncPar),
geometricD_(Vector<label>::zero),
solutionD_(Vector<label>::zero),
tetBasePtIsPtr_(NULL),
pointZones_
(
IOobject
(
"pointZones",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
*this,
0
),
faceZones_
(
IOobject
(
"faceZones",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
*this,
0
),
cellZones_
(
IOobject
(
"cellZones",
instance(),
meshSubDir,
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
*this,
0
),
globalMeshDataPtr_(NULL),
moving_(false),
changing_(false),
curMotionTimeIndex_(time().timeIndex()),
oldPointsPtr_(NULL)
{
// Check if faces are valid
forAll(faces_, faceI)
{
const face& curFace = faces_[faceI];
if (min(curFace) < 0 || max(curFace) > points_.size())
{
FatalErrorIn
(
"polyMesh::polyMesh\n"
"(\n"
" const IOobject&,\n"
" const Xfer<pointField>&,\n"
" const Xfer<faceList>&,\n"
" const Xfer<cellList>&\n"
")\n"
) << "Face " << faceI << "contains vertex labels out of range: "
<< curFace << " Max point index = " << points_.size()
<< abort(FatalError);
}
}
// transfer in cell list
cellList cLst(cells);
// Check if cells are valid
forAll(cLst, cellI)
{
const cell& curCell = cLst[cellI];
if (min(curCell) < 0 || max(curCell) > faces_.size())
{
FatalErrorIn
(
"polyMesh::polyMesh\n"
"(\n"
" const IOobject&,\n"
" const Xfer<pointField>&,\n"
" const Xfer<faceList>&,\n"
" const Xfer<cellList>&\n"
")\n"
) << "Cell " << cellI << "contains face labels out of range: "
<< curCell << " Max face index = " << faces_.size()
<< abort(FatalError);
}
}
// Set the primitive mesh
initMesh(cLst);
}
void Foam::polyMesh::resetPrimitives
(
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<labelList>& owner,
const Xfer<labelList>& neighbour,
const labelList& patchSizes,
const labelList& patchStarts,
const bool validBoundary
)
{
// Clear addressing. Keep geometric props for mapping.
clearAddressing();
// Take over new primitive data.
// Optimized to avoid overwriting data at all
if (&points)
{
points_.transfer(points());
bounds_ = boundBox(points_, validBoundary);
}
if (&faces)
{
faces_.transfer(faces());
}
if (&owner)
{
owner_.transfer(owner());
}
if (&neighbour)
{
neighbour_.transfer(neighbour());
}
// Reset patch sizes and starts
forAll(boundary_, patchI)
{
boundary_[patchI] = polyPatch
(
boundary_[patchI].name(),
patchSizes[patchI],
patchStarts[patchI],
patchI,
boundary_
);
}
// Flags the mesh files as being changed
setInstance(time().timeName());
// Check if the faces and cells are valid
forAll(faces_, faceI)
{
const face& curFace = faces_[faceI];
if (min(curFace) < 0 || max(curFace) > points_.size())
{
FatalErrorIn
(
"polyMesh::polyMesh::resetPrimitives\n"
"(\n"
" const Xfer<pointField>&,\n"
" const Xfer<faceList>&,\n"
" const Xfer<labelList>& owner,\n"
" const Xfer<labelList>& neighbour,\n"
" const labelList& patchSizes,\n"
" const labelList& patchStarts\n"
" const bool validBoundary\n"
")\n"
) << "Face " << faceI << " contains vertex labels out of range: "
<< curFace << " Max point index = " << points_.size()
<< abort(FatalError);
}
}
// Set the primitive mesh from the owner_, neighbour_.
// Works out from patch end where the active faces stop.
initMesh();
if (validBoundary)
{
// Note that we assume that all the patches stay the same and are
// correct etc. so we can already use the patches to do
// processor-processor comms.
// Calculate topology for the patches (processor-processor comms etc.)
boundary_.updateMesh();
// Calculate the geometry for the patches (transformation tensors etc.)
boundary_.calcGeometry();
// Warn if global empty mesh
if
(
(returnReduce(nPoints(), sumOp<label>()) == 0)
|| (returnReduce(nCells(), sumOp<label>()) == 0)
)
{
FatalErrorIn
(
"polyMesh::polyMesh::resetPrimitives\n"
"(\n"
" const Xfer<pointField>&,\n"
" const Xfer<faceList>&,\n"
" const Xfer<labelList>& owner,\n"
" const Xfer<labelList>& neighbour,\n"
" const labelList& patchSizes,\n"
" const labelList& patchStarts\n"
" const bool validBoundary\n"
")\n"
) << "no points or no cells in mesh" << endl;
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::polyMesh::~polyMesh()
{
clearOut();
resetMotion();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
const Foam::fileName& Foam::polyMesh::dbDir() const
{
if (objectRegistry::dbDir() == defaultRegion)
{
return parent().dbDir();
}
else
{
return objectRegistry::dbDir();
}
}
Foam::fileName Foam::polyMesh::meshDir() const
{
return dbDir()/meshSubDir;
}
const Foam::fileName& Foam::polyMesh::pointsInstance() const
{
return points_.instance();
}
const Foam::fileName& Foam::polyMesh::facesInstance() const
{
return faces_.instance();
}
const Foam::Vector<Foam::label>& Foam::polyMesh::geometricD() const
{
if (geometricD_.x() == 0)
{
calcDirections();
}
return geometricD_;
}
Foam::label Foam::polyMesh::nGeometricD() const
{
return cmptSum(geometricD() + Vector<label>::one)/2;
}
const Foam::Vector<Foam::label>& Foam::polyMesh::solutionD() const
{
if (solutionD_.x() == 0)
{
calcDirections();
}
return solutionD_;
}
Foam::label Foam::polyMesh::nSolutionD() const
{
return cmptSum(solutionD() + Vector<label>::one)/2;
}
const Foam::labelList& Foam::polyMesh::tetBasePtIs() const
{
if (!tetBasePtIsPtr_)
{
if (debug)
{
WarningIn("const labelList& polyMesh::tetBasePtIs() const")
<< "Tet base point indices not available. "
<< "Forcing storage of base points."
<< endl;
}
tetBasePtIsPtr_ = new labelList
(
polyMeshTetDecomposition::findFaceBasePts(*this)
);
}
return *tetBasePtIsPtr_;
}
// Add boundary patches. Constructor helper
void Foam::polyMesh::addPatches
(
const List<polyPatch*>& p,
const bool validBoundary
)
{
if (boundaryMesh().size())
{
FatalErrorIn
(
"void polyMesh::addPatches(const List<polyPatch*>&, const bool)"
) << "boundary already exists"
<< abort(FatalError);
}
// Reset valid directions
geometricD_ = Vector<label>::zero;
solutionD_ = Vector<label>::zero;
boundary_.setSize(p.size());
// Copy the patch pointers
forAll(p, pI)
{
boundary_.set(pI, p[pI]);
}
// parallelData depends on the processorPatch ordering so force
// recalculation. Problem: should really be done in removeBoundary but
// there is some info in parallelData which might be interesting inbetween
// removeBoundary and addPatches.
deleteDemandDrivenData(globalMeshDataPtr_);
if (validBoundary)
{
// Calculate topology for the patches (processor-processor comms etc.)
boundary_.updateMesh();
// Calculate the geometry for the patches (transformation tensors etc.)
boundary_.calcGeometry();
boundary_.checkDefinition();
}
}
// Add mesh zones. Constructor helper
void Foam::polyMesh::addZones
(
const List<pointZone*>& pz,
const List<faceZone*>& fz,
const List<cellZone*>& cz
)
{
if (pointZones().size() || faceZones().size() || cellZones().size())
{
FatalErrorIn
(
"void addZones\n"
"(\n"
" const List<pointZone*>&,\n"
" const List<faceZone*>&,\n"
" const List<cellZone*>&\n"
")"
) << "point, face or cell zone already exists"
<< abort(FatalError);
}
// Point zones
if (pz.size())
{
pointZones_.setSize(pz.size());
// Copy the zone pointers
forAll(pz, pI)
{
pointZones_.set(pI, pz[pI]);
}
pointZones_.writeOpt() = IOobject::AUTO_WRITE;
}
// Face zones
if (fz.size())
{
faceZones_.setSize(fz.size());
// Copy the zone pointers
forAll(fz, fI)
{
faceZones_.set(fI, fz[fI]);
}
faceZones_.writeOpt() = IOobject::AUTO_WRITE;
}
// Cell zones
if (cz.size())
{
cellZones_.setSize(cz.size());
// Copy the zone pointers
forAll(cz, cI)
{
cellZones_.set(cI, cz[cI]);
}
cellZones_.writeOpt() = IOobject::AUTO_WRITE;
}
}
const Foam::pointField& Foam::polyMesh::points() const
{
if (clearedPrimitives_)
{
FatalErrorIn("const pointField& polyMesh::points() const")
<< "points deallocated"
<< abort(FatalError);
}
return points_;
}
const Foam::faceList& Foam::polyMesh::faces() const
{
if (clearedPrimitives_)
{
FatalErrorIn("const faceList& polyMesh::faces() const")
<< "faces deallocated"
<< abort(FatalError);
}
return faces_;
}
const Foam::labelList& Foam::polyMesh::faceOwner() const
{
return owner_;
}
const Foam::labelList& Foam::polyMesh::faceNeighbour() const
{
return neighbour_;
}
// Return old mesh motion points
const Foam::pointField& Foam::polyMesh::oldPoints() const
{
if (!oldPointsPtr_)
{
if (debug)
{
WarningIn("const pointField& polyMesh::oldPoints() const")
<< "Old points not available. Forcing storage of old points"
<< endl;
}
oldPointsPtr_ = new pointField(points_);
curMotionTimeIndex_ = time().timeIndex();
}
return *oldPointsPtr_;
}
Foam::tmp<Foam::scalarField> Foam::polyMesh::movePoints
(
const pointField& newPoints
)
{
if (debug)
{
Info<< "tmp<scalarField> polyMesh::movePoints(const pointField&) : "
<< " Moving points for time " << time().value()
<< " index " << time().timeIndex() << endl;
}
moving(true);
// Pick up old points
if (curMotionTimeIndex_ != time().timeIndex())
{
// Mesh motion in the new time step
deleteDemandDrivenData(oldPointsPtr_);
oldPointsPtr_ = new pointField(points_);
curMotionTimeIndex_ = time().timeIndex();
}
points_ = newPoints;
if (debug)
{
// Check mesh motion
if (primitiveMesh::checkMeshMotion(points_, true))
{
Info<< "tmp<scalarField> polyMesh::movePoints"
<< "(const pointField&) : "
<< "Moving the mesh with given points will "
<< "invalidate the mesh." << nl
<< "Mesh motion should not be executed." << endl;
}
}
points_.writeOpt() = IOobject::AUTO_WRITE;
points_.instance() = time().timeName();
tmp<scalarField> sweptVols = primitiveMesh::movePoints
(
points_,
oldPoints()
);
// Adjust parallel shared points
if (globalMeshDataPtr_)
{
globalMeshDataPtr_->movePoints(points_);
}
// Force recalculation of all geometric data with new points
bounds_ = boundBox(points_);
boundary_.movePoints(points_);
pointZones_.movePoints(points_);
faceZones_.movePoints(points_);
cellZones_.movePoints(points_);
// Reset valid directions (could change with rotation)
geometricD_ = Vector<label>::zero;
solutionD_ = Vector<label>::zero;
// Hack until proper callbacks. Below are all the polyMeh MeshObjects with a
// movePoints function.
// pointMesh
if (thisDb().foundObject<pointMesh>(pointMesh::typeName))
{
const_cast<pointMesh&>
(
thisDb().lookupObject<pointMesh>
(
pointMesh::typeName
)
).movePoints(points_);
}
return sweptVols;
}
// Reset motion by deleting old points
void Foam::polyMesh::resetMotion() const
{
curMotionTimeIndex_ = 0;
deleteDemandDrivenData(oldPointsPtr_);
}
// Return parallel info
const Foam::globalMeshData& Foam::polyMesh::globalData() const
{
if (!globalMeshDataPtr_)
{
if (debug)
{
Pout<< "polyMesh::globalData() const : "
<< "Constructing parallelData from processor topology" << nl
<< "This needs the patch faces to be correctly matched"
<< endl;
}
// Construct globalMeshData using processorPatch information only.
globalMeshDataPtr_ = new globalMeshData(*this);
}
return *globalMeshDataPtr_;
}
// Remove all files and some subdirs (eg, sets)
void Foam::polyMesh::removeFiles(const fileName& instanceDir) const
{
fileName meshFilesPath = thisDb().path()/instanceDir/meshDir();
rm(meshFilesPath/"points");
rm(meshFilesPath/"faces");
rm(meshFilesPath/"owner");
rm(meshFilesPath/"neighbour");
rm(meshFilesPath/"cells");
rm(meshFilesPath/"boundary");
rm(meshFilesPath/"pointZones");
rm(meshFilesPath/"faceZones");
rm(meshFilesPath/"cellZones");
rm(meshFilesPath/"meshModifiers");
rm(meshFilesPath/"parallelData");
// remove subdirectories
if (isDir(meshFilesPath/"sets"))
{
rmDir(meshFilesPath/"sets");
}
}
void Foam::polyMesh::removeFiles() const
{
removeFiles(instance());
}
// ************************************************************************* //