Skip to content
Snippets Groups Projects
Commit 163031a1 authored by graham's avatar graham
Browse files

Adding notes and support variables for tangential forces.

parent 06e428f6
No related branches found
No related tags found
No related merge requests found
...@@ -70,9 +70,9 @@ void Foam::SpringSliderDashpot<CloudType>::evaluatePair ...@@ -70,9 +70,9 @@ void Foam::SpringSliderDashpot<CloudType>::evaluatePair
{ {
vector r_AB = (pA.position() - pB.position()); vector r_AB = (pA.position() - pB.position());
scalar normalOverlap = 0.5*(pA.d() + pB.d()) - mag(r_AB); scalar normalOverlapMag = 0.5*(pA.d() + pB.d()) - mag(r_AB);
if (normalOverlap > 0) if (normalOverlapMag > 0)
{ {
//Particles in collision //Particles in collision
...@@ -88,16 +88,69 @@ void Foam::SpringSliderDashpot<CloudType>::evaluatePair ...@@ -88,16 +88,69 @@ void Foam::SpringSliderDashpot<CloudType>::evaluatePair
scalar kN = (4.0/3.0)*sqrt(R)*Estar_; scalar kN = (4.0/3.0)*sqrt(R)*Estar_;
scalar etaN = alpha_*sqrt(M*kN)*sqrt(sqrt(normalOverlap)); scalar etaN = alpha_*sqrt(M*kN)*sqrt(sqrt(normalOverlapMag));
vector f_AB = // Normal force
vector fN_AB =
rHat_AB rHat_AB
*(kN*pow(normalOverlap, b_) - etaN*(U_AB & rHat_AB)); *(kN*pow(normalOverlapMag, b_) - etaN*(U_AB & rHat_AB));
pA.f() += f_AB; pA.f() += fN_AB;
pB.f() += -f_AB; pB.f() += -fN_AB;
vector Uslip_AB =
U_AB
- (U_AB & rHat_AB)*rHat_AB
- (pA.omega() ^ (pA.r()*rHat_AB))
- (pB.omega() ^ (pB.r()*rHat_AB));
const scalar deltaT = this->owner().mesh().time().deltaT().value();
// TODO retrieve tangentialOverlap from previous collision
vector tangentialOverlap = vector::zero;
tangentialOverlap += Uslip_AB * deltaT;
// const scalar& etaT = etaN;
// Tangential force
// fT_AB =
} }
} }
// + Add this force to the sum of forces for this particle, + If
// normalOverlap < 0 then there is no collision between this pair and
// any record of collision in the previous timestep and the
// accumulated value of tangentialOverlap are removed.
// + If normalOverlap > 0 then a check is made to see if these
// particles were colliding in the previous step, if so, retrieve
// the previous value of tangentialOverlap, if not, create a
// collision record with tangentialOverlap = 0.
// + Calculate Delta(tangentialOverlap):
// Delta(tangentialOverlap) = vSlip * dt
// where dt is the current timestep and vSlip:
// vSlip = vRel - (vRel & n)n - omega1 ^ r1*n - omega2 ^ r2*n
// adding Delta(tangentialOverlap) to the current value of tangentialOverlap
// for this collision pair.
// + Using the current value of tangentialOverlap for the pair,
// calculate the tangential component of force on this particle, Ft:
// Ft = -min(kT*mag(tangentialOverlap), mu*mag(Fn))
// *tangentialOverlap/mag(tangentialOverlap) - etaT*vSlip
// Where mu is the coefficient of friction (values f in table 1?),
// kT is a function of normalOverlap, r1, r2, E1, E2, sigma1 and
// sigma2, and etaT = etaN.
// + Add Ft and its torque to the particle, and the corresponding
// parts to the other particle.
// Corresponding torque
// ((r1*-n) ^ Fn)
// ^ is the cross product, the point of application of the
// force relative to the particle's position (assumed to be its centre of
// mass) is (r1*-n).
// The other particle receives the negative of this force value and
// calculates its torque contribution as ((r2*n) ^ -Fn).
// ************************************************************************* // // ************************************************************************* //
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment