Commit 28627250 authored by Mark OLESEN's avatar Mark OLESEN
Browse files

CONFIG: update catalyst configuration files

- relocated from
    etc/caseDicts/postProcessing/catalyst/ -> etc/caseDicts/insitu/catalyst/

- adjusted for unified catalyst function object
parent cc0eac3e
......@@ -5,7 +5,7 @@
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
// Insitu processing of finiteVolume fields with ParaView Catalyst
// Insitu processing with ParaView Catalyst
type catalyst;
libs ("libcatalystFoam.so");
......
from paraview.simple import *
from paraview import coprocessing
# The frequency to output everything
outputfrequency = 1
# Simply print out all channel names that our function object is producing
# ----------------------- CoProcessor definition -----------------------
def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):
class Pipeline:
for i in range(datadescription.GetNumberOfInputDescriptions()):
name = datadescription.GetInputDescriptionName(i)
input = coprocessor.CreateProducer(datadescription, name)
grid = input.GetClientSideObject().GetOutputDataObject(0)
print "Channel <" + name + "> is", grid.GetClassName()
return Pipeline()
class CoProcessor(coprocessing.CoProcessor):
def CreatePipeline(self, datadescription):
self.Pipeline = _CreatePipeline(self, datadescription)
return CoProcessor()
#--------------------------------------------------------------
# Global variables that will hold the pipeline for each timestep
# Creating the CoProcessor object, doesn't actually create the ParaView pipeline.
# It will be automatically setup when coprocessor.UpdateProducers() is called the
# first time.
coprocessor = CreateCoProcessor()
#--------------------------------------------------------------
# Enable Live-Visualizaton with ParaView
coprocessor.EnableLiveVisualization(False)
# ---------------------- Data Selection method ----------------------
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep"
global coprocessor
if datadescription.GetForceOutput() == True or datadescription.GetTimeStep() % outputfrequency == 0:
# We are just going to request all fields and meshes from the simulation
# code/adaptor.
for i in range(datadescription.GetNumberOfInputDescriptions()):
datadescription.GetInputDescription(i).AllFieldsOn()
datadescription.GetInputDescription(i).GenerateMeshOn()
return
# setup requests for all inputs based on the requirements of the
# pipeline.
coprocessor.LoadRequestedData(datadescription)
# ------------------------ Processing method ------------------------
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep"
global coprocessor
# Update the coprocessor by providing it the newly generated simulation data.
# If the pipeline hasn't been setup yet, this will setup the pipeline.
coprocessor.UpdateProducers(datadescription)
# Write output data, if appropriate.
coprocessor.WriteData(datadescription);
from paraview.simple import *
from paraview import coprocessing
# The frequency to output everything
outputfrequency = 5
# This is largely identical to the Catalyst allinputsgridwriter.py example
# but only handle vtkMultiBlockDataSet, since that is what we generate
# ----------------------- CoProcessor definition -----------------------
def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):
class Pipeline:
for i in range(datadescription.GetNumberOfInputDescriptions()):
name = datadescription.GetInputDescriptionName(i)
input = coprocessor.CreateProducer(datadescription, name)
grid = input.GetClientSideObject().GetOutputDataObject(0)
if grid.IsA('vtkMultiBlockDataSet'):
writer = servermanager.writers.XMLMultiBlockDataWriter(Input=input)
coprocessor.RegisterWriter(writer, filename=name+'_%t.vtm', freq=outputfrequency)
return Pipeline()
class CoProcessor(coprocessing.CoProcessor):
def CreatePipeline(self, datadescription):
self.Pipeline = _CreatePipeline(self, datadescription)
return CoProcessor()
#--------------------------------------------------------------
# Global variables that will hold the pipeline for each timestep
# Creating the CoProcessor object, doesn't actually create the ParaView pipeline.
# It will be automatically setup when coprocessor.UpdateProducers() is called the
# first time.
coprocessor = CreateCoProcessor()
#--------------------------------------------------------------
# Enable Live-Visualizaton with ParaView
coprocessor.EnableLiveVisualization(False)
# ---------------------- Data Selection method ----------------------
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep"
global coprocessor
if datadescription.GetForceOutput() == True or datadescription.GetTimeStep() % outputfrequency == 0:
# We are just going to request all fields and meshes from the simulation
# code/adaptor.
for i in range(datadescription.GetNumberOfInputDescriptions()):
datadescription.GetInputDescription(i).AllFieldsOn()
datadescription.GetInputDescription(i).GenerateMeshOn()
return
# setup requests for all inputs based on the requirements of the
# pipeline.
coprocessor.LoadRequestedData(datadescription)
# ------------------------ Processing method ------------------------
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep"
global coprocessor
# Update the coprocessor by providing it the newly generated simulation data.
# If the pipeline hasn't been setup yet, this will setup the pipeline.
coprocessor.UpdateProducers(datadescription)
# Write output data, if appropriate.
coprocessor.WriteData(datadescription);
# Write image capture (Last arg: rescale lookup table), if appropriate.
coprocessor.WriteImages(datadescription, rescale_lookuptable=False)
# Live Visualization, if enabled.
coprocessor.DoLiveVisualization(datadescription, "localhost", 22222)
from paraview.simple import *
from paraview import coprocessing
# The frequency to output everything
outputfrequency = 5
# As per writeAll, but only for "/mesh" sub-channels.
# ----------------------- CoProcessor definition -----------------------
def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):
class Pipeline:
for i in range(datadescription.GetNumberOfInputDescriptions()):
name = datadescription.GetInputDescriptionName(i)
if not name.endswith('/mesh'):
continue
input = coprocessor.CreateProducer(datadescription, name)
grid = input.GetClientSideObject().GetOutputDataObject(0)
if grid.IsA('vtkMultiBlockDataSet'):
writer = servermanager.writers.XMLMultiBlockDataWriter(Input=input)
coprocessor.RegisterWriter(writer, filename=name+'_%t.vtm', freq=outputfrequency)
return Pipeline()
class CoProcessor(coprocessing.CoProcessor):
def CreatePipeline(self, datadescription):
self.Pipeline = _CreatePipeline(self, datadescription)
return CoProcessor()
#--------------------------------------------------------------
# Global variables that will hold the pipeline for each timestep
# Creating the CoProcessor object, doesn't actually create the ParaView pipeline.
# It will be automatically setup when coprocessor.UpdateProducers() is called the
# first time.
coprocessor = CreateCoProcessor()
#--------------------------------------------------------------
# Enable Live-Visualizaton with ParaView
coprocessor.EnableLiveVisualization(False)
# ---------------------- Data Selection method ----------------------
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep"
global coprocessor
if datadescription.GetForceOutput() == True or datadescription.GetTimeStep() % outputfrequency == 0:
# We are just going to request all fields and meshes from the simulation
# code/adaptor.
for i in range(datadescription.GetNumberOfInputDescriptions()):
datadescription.GetInputDescription(i).AllFieldsOn()
datadescription.GetInputDescription(i).GenerateMeshOn()
return
# setup requests for all inputs based on the requirements of the
# pipeline.
coprocessor.LoadRequestedData(datadescription)
# ------------------------ Processing method ------------------------
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep"
global coprocessor
# Update the coprocessor by providing it the newly generated simulation data.
# If the pipeline hasn't been setup yet, this will setup the pipeline.
coprocessor.UpdateProducers(datadescription)
# Write output data, if appropriate.
coprocessor.WriteData(datadescription);
# Write image capture (Last arg: rescale lookup table), if appropriate.
coprocessor.WriteImages(datadescription, rescale_lookuptable=False)
# Live Visualization, if enabled.
coprocessor.DoLiveVisualization(datadescription, "localhost", 22222)
from paraview.simple import *
from paraview import coprocessing
# The frequency to output everything
outputfrequency = 5
# As per writeAll, but only for "/patches" sub-channels.
# ----------------------- CoProcessor definition -----------------------
def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):
class Pipeline:
for i in range(datadescription.GetNumberOfInputDescriptions()):
name = datadescription.GetInputDescriptionName(i)
if not name.endswith('/patches'):
continue
input = coprocessor.CreateProducer(datadescription, name)
grid = input.GetClientSideObject().GetOutputDataObject(0)
if grid.IsA('vtkMultiBlockDataSet'):
writer = servermanager.writers.XMLMultiBlockDataWriter(Input=input)
coprocessor.RegisterWriter(writer, filename=name+'_%t.vtm', freq=outputfrequency)
return Pipeline()
class CoProcessor(coprocessing.CoProcessor):
def CreatePipeline(self, datadescription):
self.Pipeline = _CreatePipeline(self, datadescription)
return CoProcessor()
#--------------------------------------------------------------
# Global variables that will hold the pipeline for each timestep
# Creating the CoProcessor object, doesn't actually create the ParaView pipeline.
# It will be automatically setup when coprocessor.UpdateProducers() is called the
# first time.
coprocessor = CreateCoProcessor()
#--------------------------------------------------------------
# Enable Live-Visualizaton with ParaView
coprocessor.EnableLiveVisualization(False)
# ---------------------- Data Selection method ----------------------
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep"
global coprocessor
if datadescription.GetForceOutput() == True or datadescription.GetTimeStep() % outputfrequency == 0:
# We are just going to request all fields and meshes from the simulation
# code/adaptor.
for i in range(datadescription.GetNumberOfInputDescriptions()):
datadescription.GetInputDescription(i).AllFieldsOn()
datadescription.GetInputDescription(i).GenerateMeshOn()
return
# setup requests for all inputs based on the requirements of the
# pipeline.
coprocessor.LoadRequestedData(datadescription)
# ------------------------ Processing method ------------------------
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep"
global coprocessor
# Update the coprocessor by providing it the newly generated simulation data.
# If the pipeline hasn't been setup yet, this will setup the pipeline.
coprocessor.UpdateProducers(datadescription)
# Write output data, if appropriate.
coprocessor.WriteData(datadescription);
# Write image capture (Last arg: rescale lookup table), if appropriate.
coprocessor.WriteImages(datadescription, rescale_lookuptable=False)
# Live Visualization, if enabled.
coprocessor.DoLiveVisualization(datadescription, "localhost", 22222)
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: plus |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
// Insitu processing of finiteArea fields with ParaView Catalyst
type catalyst::area;
libs ("libcatalystFoam.so");
executeControl timeStep;
writeControl none;
// ************************************************************************* //
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: plus |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
// Insitu processing of lagrangian clouds with ParaView Catalyst
type catalyst::cloud;
libs ("libcatalystFoam.so");
executeControl timeStep;
writeControl none;
// ************************************************************************* //
......@@ -4,19 +4,23 @@ functions
{
catalyst
{
#includeEtc "caseDicts/postProcessing/catalyst/default.cfg"
mkdir "<case>/insitu";
// Selected fields (words or regex). Must have cellMask for overset!
fields ( cellMask U p );
#includeEtc "caseDicts/insitu/catalyst/catalyst.cfg"
scripts
(
"<system>/scripts/overset.py"
"<system>/scripts/writeOverset.py"
"<system>/scripts/pressure.py"
// "<system>/scripts/vorticity.py"
// "<etc>/caseDicts/insitu/catalyst/writeMesh.py"
);
inputs
{
region
{
// Selected fields (words or regex).
fields ( U p );
}
}
}
}
......
......@@ -10,11 +10,13 @@ from paraview import coprocessing
imageFileNamePadding=4
rescale_lookuptable=False
# ----------------------- CoProcessor definition -----------------------
def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):
class Pipeline:
# state file generated using paraview version 5.5.0
# ----------------------------------------------------------------
# setup views used in the visualization
......@@ -27,16 +29,15 @@ def CreateCoProcessor():
# Create a new 'Render View'
renderView1 = CreateView('RenderView')
renderView1.ViewSize = [1077, 763]
renderView1.ViewSize = [1091, 766]
renderView1.AxesGrid = 'GridAxes3DActor'
renderView1.CenterOfRotation = [0.00784385809674859, 0.005000000004656613, 0.004999999888241291]
renderView1.CenterOfRotation = [0.009999999776482582, 0.004999999888241291, 0.004999999888241291]
renderView1.StereoType = 0
renderView1.CameraPosition = [0.0072242101003740155, 0.0002877833685303474, 0.035060283710920806]
renderView1.CameraFocalPoint = [0.00868966107678934, 0.004150999005211765, 0.0049322758242629034]
renderView1.CameraViewUp = [0.3542102656908786, 0.9252429122682538, 0.135869941401907]
renderView1.CameraParallelScale = 0.00787069031419879
renderView1.CameraPosition = [0.009999999776482582, 0.004999999888241291, 0.04819751509880177]
renderView1.CameraFocalPoint = [0.009999999776482582, 0.004999999888241291, 0.004999999888241291]
renderView1.CameraParallelScale = 0.011180339637598877
renderView1.CameraParallelProjection = 1
renderView1.Background = [0.32, 0.34, 0.43]
renderView1.Background = [0, 0, 0]
# init the 'GridAxes3DActor' selected for 'AxesGrid'
renderView1.AxesGrid.XTitleFontFile = ''
......@@ -50,7 +51,7 @@ def CreateCoProcessor():
# and provide it with information such as the filename to use,
# how frequently to write the images, etc.
coprocessor.RegisterView(renderView1,
filename='insitu/image_%t.png', freq=1, fittoscreen=0, magnification=1, width=1077, height=763, cinema={})
filename='press_%t.png', freq=1, fittoscreen=0, magnification=1, width=1091, height=766, cinema={})
renderView1.ViewTime = datadescription.GetTime()
# ----------------------------------------------------------------
......@@ -62,89 +63,101 @@ def CreateCoProcessor():
# setup the data processing pipelines
# ----------------------------------------------------------------
# a producer from a simulation input
input1 = coprocessor.CreateProducer(datadescription, 'mesh')
# create a new 'XML MultiBlock Data Reader'
# create a producer from a simulation input
regionmesh = coprocessor.CreateProducer(datadescription, 'region/mesh')
# create a new 'Slice'
slice1 = Slice(Input=regionmesh)
slice1.SliceType = 'Plane'
slice1.SliceOffsetValues = [0.0]
# cellMask [0,1]
threshold1 = Threshold(Input=input1)
threshold1.Scalars = ['CELLS', 'cellMask']
threshold1.ThresholdRange = [0.9, 1.1]
# init the 'Plane' selected for 'SliceType'
slice1.SliceType.Origin = [0.01, 0.005, 0.005]
slice1.SliceType.Normal = [0.0, 0.0, 1.0]
# ----------------------------------------------------------------
# setup the visualization in view 'renderView1'
# ----------------------------------------------------------------
# show data from threshold1
threshold1Display = Show(threshold1, renderView1)
# get color transfer function/color map for 'cellTypes'
cellTypesLUT = GetColorTransferFunction('cellTypes')
cellTypesLUT.RGBPoints = [0.0, 0.231373, 0.298039, 0.752941, 1.000244140625, 0.865003, 0.865003, 0.865003, 2.00048828125, 0.705882, 0.0156863, 0.14902]
cellTypesLUT.ScalarRangeInitialized = 1.0
# show data from slice1
slice1Display = Show(slice1, renderView1)
# get opacity transfer function/opacity map for 'cellTypes'
cellTypesPWF = GetOpacityTransferFunction('cellTypes')
cellTypesPWF.Points = [0.0, 0.0, 0.5, 0.0, 2.00048828125, 1.0, 0.5, 0.0]
cellTypesPWF.ScalarRangeInitialized = 1
# get color transfer function/color map for 'p'
pLUT = GetColorTransferFunction('p')
pLUT.RGBPoints = [-0.2227432131767273, 0.231373, 0.298039, 0.752941, 0.0011433586478233337, 0.865003, 0.865003, 0.865003, 0.22502993047237396, 0.705882, 0.0156863, 0.14902]
pLUT.ScalarRangeInitialized = 1.0
# trace defaults for the display properties.
threshold1Display.Representation = 'Surface With Edges'
threshold1Display.ColorArrayName = ['CELLS', 'cellTypes']
threshold1Display.LookupTable = cellTypesLUT
threshold1Display.OSPRayScaleArray = 'U'
threshold1Display.OSPRayScaleFunction = 'PiecewiseFunction'
threshold1Display.SelectOrientationVectors = 'None'
threshold1Display.ScaleFactor = 0.0019999999552965165
threshold1Display.SelectScaleArray = 'None'
threshold1Display.GlyphType = 'Arrow'
threshold1Display.GlyphTableIndexArray = 'None'
threshold1Display.GaussianRadius = 9.999999776482583e-05
threshold1Display.SetScaleArray = ['POINTS', 'U']
threshold1Display.ScaleTransferFunction = 'PiecewiseFunction'
threshold1Display.OpacityArray = ['POINTS', 'U']
threshold1Display.OpacityTransferFunction = 'PiecewiseFunction'
threshold1Display.DataAxesGrid = 'GridAxesRepresentation'
threshold1Display.SelectionCellLabelFontFile = ''
threshold1Display.SelectionPointLabelFontFile = ''
threshold1Display.PolarAxes = 'PolarAxesRepresentation'
threshold1Display.ScalarOpacityFunction = cellTypesPWF
threshold1Display.ScalarOpacityUnitDistance = 0.0017065741933059136
slice1Display.Representation = 'Surface'
slice1Display.ColorArrayName = ['POINTS', 'p']
slice1Display.LookupTable = pLUT
slice1Display.OSPRayScaleArray = 'U'
slice1Display.OSPRayScaleFunction = 'PiecewiseFunction'
slice1Display.SelectOrientationVectors = 'None'
slice1Display.ScaleFactor = 0.0019999999552965165
slice1Display.SelectScaleArray = 'None'
slice1Display.GlyphType = 'Arrow'
slice1Display.GlyphTableIndexArray = 'None'
slice1Display.GaussianRadius = 9.999999776482583e-05
slice1Display.SetScaleArray = ['POINTS', 'U']
slice1Display.ScaleTransferFunction = 'PiecewiseFunction'
slice1Display.OpacityArray = ['POINTS', 'U']
slice1Display.OpacityTransferFunction = 'PiecewiseFunction'
slice1Display.DataAxesGrid = 'GridAxesRepresentation'
slice1Display.SelectionCellLabelFontFile = ''
slice1Display.SelectionPointLabelFontFile = ''
slice1Display.PolarAxes = 'PolarAxesRepresentation'
# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
threshold1Display.ScaleTransferFunction.Points = [-0.2505497634410858, 0.0, 0.5, 0.0, 0.3270378112792969, 1.0, 0.5, 0.0]
slice1Display.ScaleTransferFunction.Points = [-0.2436095029115677, 0.0, 0.5, 0.0, 0.2753259241580963, 1.0, 0.5, 0.0]
# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
threshold1Display.OpacityTransferFunction.Points = [-0.2505497634410858, 0.0, 0.5, 0.0, 0.3270378112792969, 1.0, 0.5, 0.0]
slice1Display.OpacityTransferFunction.Points = [-0.2436095029115677, 0.0, 0.5, 0.0, 0.2753259241580963, 1.0, 0.5, 0.0]
# init the 'GridAxesRepresentation' selected for 'DataAxesGrid'
threshold1Display.DataAxesGrid.XTitleFontFile = ''
threshold1Display.DataAxesGrid.YTitleFontFile = ''
threshold1Display.DataAxesGrid.ZTitleFontFile = ''
threshold1Display.DataAxesGrid.XLabelFontFile = ''
threshold1Display.DataAxesGrid.YLabelFontFile = ''
threshold1Display.DataAxesGrid.ZLabelFontFile = ''
slice1Display.DataAxesGrid.XTitleFontFile = ''
slice1Display.DataAxesGrid.YTitleFontFile = ''
slice1Display.DataAxesGrid.ZTitleFontFile = ''
slice1Display.DataAxesGrid.XLabelFontFile = ''
slice1Display.DataAxesGrid.YLabelFontFile = ''
slice1Display.DataAxesGrid.ZLabelFontFile = ''
# init the 'PolarAxesRepresentation' selected for 'PolarAxes'
threshold1Display.PolarAxes.PolarAxisTitleFontFile = ''
threshold1Display.PolarAxes.PolarAxisLabelFontFile = ''
threshold1Display.PolarAxes.LastRadialAxisTextFontFile = ''
threshold1Display.PolarAxes.SecondaryRadialAxesTextFontFile = ''
slice1Display.PolarAxes.PolarAxisTitleFontFile = ''
slice1Display.PolarAxes.PolarAxisLabelFontFile = ''
slice1Display.PolarAxes.LastRadialAxisTextFontFile = ''
slice1Display.PolarAxes.SecondaryRadialAxesTextFontFile = ''
# setup the color legend parameters for each legend in this view
# get color legend/bar for cellTypesLUT in view renderView1
cellTypesLUTColorBar = GetScalarBar(cellTypesLUT, renderView1)
cellTypesLUTColorBar.Title = 'cellTypes'
cellTypesLUTColorBar.ComponentTitle = ''
cellTypesLUTColorBar.TitleFontFile = ''
cellTypesLUTColorBar.LabelFontFile = ''
# get color legend/bar for pLUT in view renderView1
pLUTColorBar = GetScalarBar(pLUT, renderView1)
pLUTColorBar.Title = 'p'
pLUTColorBar.ComponentTitle = ''
pLUTColorBar.TitleFontFile = ''
pLUTColorBar.LabelFontFile = ''
# set color bar visibility
cellTypesLUTColorBar.Visibility = 1
pLUTColorBar.Visibility = 1
# show color legend
threshold1Display.SetScalarBarVisibility(renderView1, True)
slice1Display.SetScalarBarVisibility(renderView1, True)
# ----------------------------------------------------------------
# setup color maps and opacity mapes used in the visualization
# note: the Get..() functions create a new object, if needed
# ----------------------------------------------------------------
# get opacity transfer function/opacity map for 'p'
pPWF = GetOpacityTransferFunction('p')
pPWF.Points = [-0.2227432131767273, 0.0, 0.5, 0.0, 0.22502993047237396, 1.0, 0.5, 0.0]
pPWF.ScalarRangeInitialized = 1
# ----------------------------------------------------------------
# finally, restore active source
SetActiveSource(slice1)
# ----------------------------------------------------------------
return Pipeline()
class CoProcessor(coprocessing.CoProcessor):