Commit 3e3a1837 authored by Henry Weller's avatar Henry Weller
Browse files

Completed transformation of post-processing utilities into functionObjects

parent 1bef3ab2
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lgenericPatchFields \
-lfiniteVolume \
-lmeshTools
/*---------------------------------------------------------------------------* \
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
streamFunction
Description
Calculates and writes the stream function of velocity field U at each
time.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "pointFields.H"
#include "emptyPolyPatch.H"
#include "symmetryPlanePolyPatch.H"
#include "symmetryPolyPatch.H"
#include "wedgePolyPatch.H"
#include "OSspecific.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
label nD = mesh.nGeometricD();
if (nD != 2)
{
FatalErrorInFunction
<< "Case is not 2D, stream-function cannot be computed"
<< exit(FatalError);
}
Vector<label> slabNormal((Vector<label>::one - mesh.geometricD())/2);
const direction slabDir
(
slabNormal
& Vector<label>(Vector<label>::X, Vector<label>::Y, Vector<label>::Z)
);
scalar thickness = vector(slabNormal) & mesh.bounds().span();
const pointMesh& pMesh = pointMesh::New(mesh);
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< nl << "Time: " << runTime.timeName() << endl;
IOobject phiHeader
(
"phi",
runTime.timeName(),
mesh,
IOobject::NO_READ
);
if (phiHeader.headerOk())
{
mesh.readUpdate();
Info<< nl << "Reading field phi" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
pointScalarField streamFunction
(
IOobject
(
"streamFunction",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
pMesh,
dimensionedScalar("zero", phi.dimensions(), 0.0)
);
labelList visitedPoint(mesh.nPoints());
forAll(visitedPoint, pointi)
{
visitedPoint[pointi] = 0;
}
label nVisited = 0;
label nVisitedOld = 0;
const faceUList& faces = mesh.faces();
const pointField& points = mesh.points();
label nInternalFaces = mesh.nInternalFaces();
vectorField unitAreas(mesh.faceAreas());
unitAreas /= mag(unitAreas);
const polyPatchList& patches = mesh.boundaryMesh();
bool finished = true;
// Find the boundary face with zero flux. set the stream function
// to zero on that face
bool found = false;
do
{
found = false;
forAll(patches, patchi)
{
const primitivePatch& bouFaces = patches[patchi];
if (!isType<emptyPolyPatch>(patches[patchi]))
{
forAll(bouFaces, facei)
{
if
(
magSqr(phi.boundaryField()[patchi][facei])
< SMALL
)
{
const labelList& zeroPoints = bouFaces[facei];
// Zero flux face found
found = true;
forAll(zeroPoints, pointi)
{
if (visitedPoint[zeroPoints[pointi]] == 1)
{
found = false;
break;
}
}
if (found)
{
Info<< "Zero face: patch: " << patchi
<< " face: " << facei << endl;
forAll(zeroPoints, pointi)
{
streamFunction[zeroPoints[pointi]] = 0;
visitedPoint[zeroPoints[pointi]] = 1;
nVisited++;
}
break;
}
}
}
}
if (found) break;
}
if (!found)
{
Info<< "zero flux boundary face not found. "
<< "Using cell as a reference."
<< endl;
const cellList& c = mesh.cells();
forAll(c, cI)
{
labelList zeroPoints = c[cI].labels(mesh.faces());
bool found = true;
forAll(zeroPoints, pointi)
{
if (visitedPoint[zeroPoints[pointi]] == 1)
{
found = false;
break;
}
}
if (found)
{
forAll(zeroPoints, pointi)
{
streamFunction[zeroPoints[pointi]] = 0.0;
visitedPoint[zeroPoints[pointi]] = 1;
nVisited++;
}
break;
}
else
{
FatalErrorInFunction
<< "Cannot find initialisation face or a cell."
<< abort(FatalError);
}
}
}
// Loop through all faces. If one of the points on
// the face has the streamfunction value different
// from -1, all points with -1 ont that face have the
// streamfunction value equal to the face flux in
// that point plus the value in the visited point
do
{
finished = true;
for
(
label facei = nInternalFaces;
facei<faces.size();
facei++
)
{
const labelList& curBPoints = faces[facei];
bool bPointFound = false;
scalar currentBStream = 0.0;
vector currentBStreamPoint(0, 0, 0);
forAll(curBPoints, pointi)
{
// Check if the point has been visited
if (visitedPoint[curBPoints[pointi]] == 1)
{
// The point has been visited
currentBStream =
streamFunction[curBPoints[pointi]];
currentBStreamPoint =
points[curBPoints[pointi]];
bPointFound = true;
break;
}
}
if (bPointFound)
{
// Sort out other points on the face
forAll(curBPoints, pointi)
{
// Check if the point has been visited
if (visitedPoint[curBPoints[pointi]] == 0)
{
label patchNo =
mesh.boundaryMesh().whichPatch(facei);
if
(
!isType<emptyPolyPatch>
(patches[patchNo])
&& !isType<symmetryPlanePolyPatch>
(patches[patchNo])
&& !isType<symmetryPolyPatch>
(patches[patchNo])
&& !isType<wedgePolyPatch>
(patches[patchNo])
)
{
label faceNo =
mesh.boundaryMesh()[patchNo]
.whichFace(facei);
vector edgeHat =
points[curBPoints[pointi]]
- currentBStreamPoint;
edgeHat.replace(slabDir, 0);
edgeHat /= mag(edgeHat);
vector nHat = unitAreas[facei];
if (edgeHat.y() > VSMALL)
{
visitedPoint[curBPoints[pointi]] =
1;
nVisited++;
streamFunction[curBPoints[pointi]]
=
currentBStream
+ phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.x());
}
else if (edgeHat.y() < -VSMALL)
{
visitedPoint[curBPoints[pointi]] =
1;
nVisited++;
streamFunction[curBPoints[pointi]]
=
currentBStream
- phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.x());
}
else
{
if (edgeHat.x() > VSMALL)
{
visitedPoint
[curBPoints[pointi]] = 1;
nVisited++;
streamFunction
[curBPoints[pointi]] =
currentBStream
+ phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.y());
}
else if (edgeHat.x() < -VSMALL)
{
visitedPoint
[curBPoints[pointi]] = 1;
nVisited++;
streamFunction
[curBPoints[pointi]] =
currentBStream
- phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.y());
}
}
}
}
}
}
else
{
finished = false;
}
}
for (label facei=0; facei<nInternalFaces; facei++)
{
// Get the list of point labels for the face
const labelList& curPoints = faces[facei];
bool pointFound = false;
scalar currentStream = 0.0;
point currentStreamPoint(0, 0, 0);
forAll(curPoints, pointi)
{
// Check if the point has been visited
if (visitedPoint[curPoints[pointi]] == 1)
{
// The point has been visited
currentStream =
streamFunction[curPoints[pointi]];
currentStreamPoint =
points[curPoints[pointi]];
pointFound = true;
break;
}
}
if (pointFound)
{
// Sort out other points on the face
forAll(curPoints, pointi)
{
// Check if the point has been visited
if (visitedPoint[curPoints[pointi]] == 0)
{
vector edgeHat =
points[curPoints[pointi]]
- currentStreamPoint;
edgeHat.replace(slabDir, 0);
edgeHat /= mag(edgeHat);
vector nHat = unitAreas[facei];
if (edgeHat.y() > VSMALL)
{
visitedPoint[curPoints[pointi]] = 1;
nVisited++;
streamFunction[curPoints[pointi]] =
currentStream
+ phi[facei]*sign(nHat.x());
}
else if (edgeHat.y() < -VSMALL)
{
visitedPoint[curPoints[pointi]] = 1;
nVisited++;
streamFunction[curPoints[pointi]] =
currentStream
- phi[facei]*sign(nHat.x());
}
}
}
}
else
{
finished = false;
}
}
Info<< ".";
if (nVisited == nVisitedOld)
{
// Find new seed. This must be a
// multiply connected domain
Info<< nl << "Exhausted a seed. Looking for new seed "
<< "(this is correct for multiply connected "
<< "domains).";
break;
}
else
{
nVisitedOld = nVisited;
}
} while (!finished);
Info<< endl;
} while (!finished);
// Normalise the stream-function by the 2D mesh thickness
streamFunction /= thickness;
streamFunction.boundaryFieldRef() = 0.0;
streamFunction.write();
}
else
{
WarningInFunction
<< "Flux field does not exist."
<< " Stream function not calculated" << endl;
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //
EXE_INC = \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lreactionThermophysicalModels \
-lgenericPatchFields \
-lspecie \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lsolidThermo \
-lfiniteVolume \
-lfvOptions \
-lmeshTools
autoPtr<basicThermo> thermo
(
basicThermo::New(mesh)
);
const volScalarField& h = thermo->he();
// Register copy of thermo density
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo->rho()
);
// Construct turbulence model (if fluid)
autoPtr<volVectorField> UPtr;
autoPtr<surfaceScalarField> phiPtr;
autoPtr<compressible::turbulenceModel> turbulence;
if (isA<fluidThermo>(thermo()))
{
UPtr.reset
(
new volVectorField
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
)
);
const volVectorField& U = UPtr();