Skip to content
Snippets Groups Projects
Commit 516c20c8 authored by Andrew Heather's avatar Andrew Heather
Browse files

adding rhoReactingFoam solver

parent cd0a0a69
Branches
Tags
No related merge requests found
rhoReactingFoam.C
EXE = $(FOAM_APPBIN)/rhoReactingFoam
EXE_INC = \
-I../XiFoam \
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lcompressibleRASModels \
-lcompressibleLESModels \
-lreactionThermophysicalModels \
-lspecie \
-lbasicThermophysicalModels \
-lchemistryModel \
-lODE \
-lfiniteVolume
tmp<fv::convectionScheme<scalar> > mvConvection
(
fv::convectionScheme<scalar>::New
(
mesh,
fields,
phi,
mesh.divScheme("div(phi,Yi_h)")
)
);
{
label inertIndex = -1;
volScalarField Yt = 0.0*Y[0];
for (label i=0; i<Y.size(); i++)
{
if (Y[i].name() != inertSpecie)
{
volScalarField& Yi = Y[i];
solve
(
fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->muEff(), Yi)
==
kappa*chemistry.RR(i),
mesh.solver("Yi")
);
Yi.max(0.0);
Yt += Yi;
}
else
{
inertIndex = i;
}
}
Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].max(0.0);
}
{
Info << "Solving chemistry" << endl;
chemistry.solve
(
runTime.value() - runTime.deltaT().value(),
runTime.deltaT().value()
);
// turbulent time scale
if (turbulentReaction)
{
volScalarField tk =
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
volScalarField tc = chemistry.tc();
// Chalmers PaSR model
kappa = (runTime.deltaT() + tc)/(runTime.deltaT() + tc + tk);
}
else
{
kappa = 1.0;
}
}
Info<< nl << "Reading thermophysicalProperties" << endl;
autoPtr<rhoChemistryModel> pChemistry
(
rhoChemistryModel::New(mesh)
);
rhoChemistryModel& chemistry = pChemistry();
hReactionThermo& thermo = chemistry.thermo();
basicMultiComponentMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
word inertSpecie(thermo.lookup("inertSpecie"));
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField& p = thermo.p();
const volScalarField& psi = thermo.psi();
volScalarField& h = thermo.h();
#include "compressibleCreatePhi.H"
volScalarField kappa
(
IOobject
(
"kappa",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
Info << "Creating turbulence model.\n" << nl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
Info<< "Creating field DpDt\n" << endl;
volScalarField DpDt =
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
forAll (Y, i)
{
fields.add(Y[i]);
}
fields.add(h);
{
rho = thermo.rho();
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution - done in 2 parts. Part 1:
thermo.rho() -= psi*p;
volScalarField rUA = 1.0/UEqn.A();
U = rUA*UEqn.H();
if (transonic)
{
surfaceScalarField phiv =
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi);
phi = fvc::interpolate(rho)*phiv;
surfaceScalarField phid
(
"phid",
fvc::interpolate(thermo.psi())*phiv
);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvc::ddt(rho) + fvc::div(phi)
+ correction(fvm::ddt(psi, p) + fvm::div(phid, p))
- fvm::laplacian(rho*rUA, p)
);
if (ocorr == nOuterCorr && corr == nCorr && nonOrth == nNonOrthCorr)
{
pEqn.solve(mesh.solver(p.name() + "Final"));
}
else
{
pEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
phi += pEqn.flux();
}
}
}
else
{
phi =
fvc::interpolate(rho)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
+ fvc::div(phi)
- fvm::laplacian(rho*rUA, p)
);
if (ocorr == nOuterCorr && corr == nCorr && nonOrth == nNonOrthCorr)
{
pEqn.solve(mesh.solver(p.name() + "Final"));
}
else
{
pEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
phi += pEqn.flux();
}
}
}
// Second part of thermodynamic density update
thermo.rho() += psi*p;
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
}
Info<< "Reading chemistry properties\n" << endl;
IOdictionary chemistryProperties
(
IOobject
(
"chemistryProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
);
Switch turbulentReaction(chemistryProperties.lookup("turbulentReaction"));
dimensionedScalar Cmix("Cmix", dimless, 1.0);
if (turbulentReaction)
{
chemistryProperties.lookup("Cmix") >> Cmix;
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2009-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
rhoReactingFoam
Description
Chemical reaction code using density based thermodynamics package.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "hReactionThermo.H"
#include "turbulenceModel.H"
#include "rhoChemistryModel.H"
#include "chemistrySolver.H"
#include "multivariateScheme.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readChemistryProperties.H"
#include "readEnvironmentalProperties.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "readPISOControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "chemistry.H"
#include "rhoEqn.H"
#include "UEqn.H"
for (label ocorr=1; ocorr <= nOuterCorr; ocorr++)
{
#include "YEqn.H"
#include "hEqn.H"
// --- PISO loop
for (int corr=1; corr<=nCorr; corr++)
{
#include "pEqn.H"
}
}
turbulence->correct();
rho = thermo.rho();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment