Commit a6ef8b90 authored by Andrew Heather's avatar Andrew Heather
Browse files

INT: Integration of isoAdvector and supporting material

Community contribution from Johan Roenby, DHI

IsoAdvector is a geometric Volume-of-Fluid method for advection of a
sharp interface between two incompressible fluids. It works on both
structured and unstructured meshes with no requirements on cell shapes.
IsoAdvector is as an alternative choice for the interface compression
treatment with the MULES limiter implemented in the interFoam family
of solvers.

The isoAdvector concept and code was developed at DHI and was funded
by a Sapere Aude postdoc grant to Johan Roenby from The Danish Council
for Independent Research | Technology and Production Sciences (Grant-ID:
DFF - 1337-00118B - FTP).
Co-funding is also provided by the GTS grant to DHI from the Danish
Agency for Science, Technology and Innovation.

The ideas behind and performance of the isoAdvector scheme is
documented in:

    Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp
    interface  advection. R. Soc. open sci. 3: 160...
parent 614b33f3
interIsoFoam.C
EXE = $(FOAM_APPBIN)/interIsoFoam
EXE_INC = \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/immiscibleIncompressibleTwoPhaseMixture/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-limmiscibleIncompressibleTwoPhaseMixture \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling
MRF.correctBoundaryVelocity(U);
fvVectorMatrix UEqn
(
fvm::ddt(rho, U) + fvm::div(rhoPhi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(rho, U)
==
fvOptions(rho, U)
);
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve
(
UEqn
==
fvc::reconstruct
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
) * mesh.magSf()
)
);
fvOptions.correct(U);
}
const dictionary& alphaControls = mesh.solverDict(alpha1.name());
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
alphaCourantNo
Description
Calculates and outputs the mean and maximum Courant Numbers.
\*---------------------------------------------------------------------------*/
scalar maxAlphaCo
(
readScalar(runTime.controlDict().lookup("maxAlphaCo"))
);
scalar alphaCoNum = 0.0;
scalar meanAlphaCoNum = 0.0;
if (mesh.nInternalFaces())
{
scalarField sumPhi
(
mixture.nearInterface()().primitiveField()
*fvc::surfaceSum(mag(phi))().primitiveField()
);
alphaCoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
meanAlphaCoNum =
0.5*(gSum(sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue();
}
Info<< "Interface Courant Number mean: " << meanAlphaCoNum
<< " max: " << alphaCoNum << endl;
// ************************************************************************* //
// If there are more than one outer corrector, we use a mixture of old and
// new U and phi for propagating alpha1 in all but the first outer iteration
if (!pimple.firstIter())
{
// We are recalculating alpha1 from the its old time value
alpha1 = alpha1.oldTime();
// Temporarily storing new U and phi values in prevIter storage
U.storePrevIter();
phi.storePrevIter();
// Overwriting new U and phi values with mixture of old and new values
phi = 0.5*(phi + phi.oldTime());
U = 0.5*(U + U.oldTime());
}
// Update alpha1
advector.advect();
// Update rhoPhi
rhoPhi = advector.getRhoPhi(rho1, rho2);
alpha2 = 1.0 - alpha1;
if (!pimple.firstIter())
{
// Restoring new U and phi values temporarily saved in prevIter() above
U = U.prevIter();
phi = phi.prevIter();
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") - 1 = " << max(alpha1).value() - 1
<< endl;
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("0", rhoPhi.dimensions(), 0)
);
tmp<volScalarField> trSubDeltaT;
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
#include "alphaEqn.H"
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
rhoPhi = rhoPhiSum;
}
else
{
#include "alphaEqn.H"
}
rho == alpha1*rho1 + alpha2*rho2;
CorrectPhi
(
U,
phi,
p_rgh,
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
geometricZeroField(),
pimple
);
#include "continuityErrs.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Reading transportProperties\n" << endl;
immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);
volScalarField& alpha1(mixture.alpha1());
volScalarField& alpha2(mixture.alpha2());
const dimensionedScalar& rho1 = mixture.rho1();
const dimensionedScalar& rho2 = mixture.rho2();
// Need to store rho for ddt(rho, U)
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT
),
alpha1*rho1 + alpha2*rho2
);
rho.oldTime();
// Mass flux
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
// Construct incompressible turbulence model
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, mixture)
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rho*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
pimple.dict(),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
mesh.setFluxRequired(p_rgh.name());
mesh.setFluxRequired(alpha1.name());
#include "createMRF.H"
#include "createIsoAdvection.H"
// Defining isoAdvection
isoAdvection advector(alpha1, phi, U);
bool frozenFlow = pimple.dict().lookupOrDefault<bool>("frozenFlow", false);
if (frozenFlow)
{
Info<< "Employing frozen-flow assumption: "
<< "pressure-velocity system will not be updated"
<< endl;
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
isoAdvector | Copyright (C) 2016 DHI
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
interIsoFoam
Group
grpMultiphaseSolvers
Description
Solver derived from interFoam for 2 incompressible, isothermal immiscible
fluids using the iso-advector phase-fraction based interface capturing
approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
For a two-fluid approach see twoPhaseEulerFoam.
Reference:
\verbatim
Roenby, J., Bredmose, H. and Jasak, H. (2016).
A computational method for sharp interface advection
Royal Society Open Science, 3
doi 10.1098/rsos.160405
\endverbatim
isoAdvector code supplied by Johan Roenby, DHI (2016)
\*---------------------------------------------------------------------------*/
#include "isoAdvection.H"
#include "fvCFD.H"
#include "subCycle.H"
#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createFvOptions.H"
#include "correctPhi.H"
turbulence->validate();
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
#include "alphaEqnSubCycle.H"
mixture.correct();
if (frozenFlow)
{
continue;
}
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi)
);
MRF.makeRelative(phiHbyA);
adjustPhi(phiHbyA, U, p_rgh);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
// - ghf*(fvc::grad(rho) & mesh.Sf())*rAUf
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA - p_rghEqn.flux();
p_rgh.relax();
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
#include "continuityErrs.H"
p == p_rgh + rho*gh;
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
setDeltaT
Description
Reset the timestep to maintain a constant maximum courant Number.
Reduction of time-step is immediate, but increase is damped to avoid
unstable oscillations.
\*---------------------------------------------------------------------------*/
if (adjustTimeStep)
{
scalar maxDeltaTFact =
min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT
)
);