Skip to content
Snippets Groups Projects
Commit a9fa0db1 authored by Henry Weller's avatar Henry Weller
Browse files

Rename setrDeltaT to setRDeltaT

parent ca81d01c
No related branches found
No related tags found
No related merge requests found
Showing with 4 additions and 476 deletions
...@@ -65,7 +65,7 @@ int main(int argc, char *argv[]) ...@@ -65,7 +65,7 @@ int main(int argc, char *argv[])
Info<< "Time = " << runTime.timeName() << nl << endl; Info<< "Time = " << runTime.timeName() << nl << endl;
#include "setrDeltaT.H" #include "setRDeltaT.H"
#include "rhoEqn.H" #include "rhoEqn.H"
......
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
{
const dictionary& pimpleDict = pimple.dict();
// Maximum flow Courant number
scalar maxCo(readScalar(pimpleDict.lookup("maxCo")));
// Maximum time scale
scalar maxDeltaT(pimpleDict.lookupOrDefault<scalar>("maxDeltaT", GREAT));
// Smoothing parameter (0-1) when smoothing iterations > 0
scalar rDeltaTSmoothingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.1)
);
// Damping coefficient (1-0)
scalar rDeltaTDampingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTDampingCoeff", 1)
);
// Maximum change in cell temperature per iteration
// (relative to previous value)
scalar alphaTemp(pimpleDict.lookupOrDefault("alphaTemp", 0.05));
Info<< "Time scales min/max:" << endl;
// Cache old reciprocal time scale field
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Flow time scale
{
rDeltaT.dimensionedInternalField() =
(
fvc::surfaceSum(mag(phi))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*rho.dimensionedInternalField())
);
// Limit the largest time scale
rDeltaT.max(1/maxDeltaT);
Info<< " Flow = "
<< gMin(1/rDeltaT.internalField()) << ", "
<< gMax(1/rDeltaT.internalField()) << endl;
}
// Reaction source time scale
if (alphaTemp < 1.0)
{
volScalarField::DimensionedInternalField rDeltaTT
(
mag(reaction->Sh())/(alphaTemp*rho*thermo.Cp()*T)
);
Info<< " Temperature = "
<< gMin(1/(rDeltaTT.field() + VSMALL)) << ", "
<< gMax(1/(rDeltaTT.field() + VSMALL)) << endl;
rDeltaT.dimensionedInternalField() = max
(
rDeltaT.dimensionedInternalField(),
rDeltaTT
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
// Spatially smooth the time scale field
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT = max
(
rDeltaT,
(scalar(1.0) - rDeltaTDampingCoeff)*rDeltaT0
);
}
Info<< " Overall = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
}
// ************************************************************************* //
...@@ -73,7 +73,7 @@ int main(int argc, char *argv[]) ...@@ -73,7 +73,7 @@ int main(int argc, char *argv[])
Info<< "Time = " << runTime.timeName() << nl << endl; Info<< "Time = " << runTime.timeName() << nl << endl;
#include "setrDeltaT.H" #include "setRDeltaT.H"
if (pimple.nCorrPIMPLE() <= 1) if (pimple.nCorrPIMPLE() <= 1)
{ {
......
{
const dictionary& pimpleDict = pimple.dict();
scalar maxCo
(
pimpleDict.lookupOrDefault<scalar>("maxCo", 0.8)
);
scalar rDeltaTSmoothingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.02)
);
scalar rDeltaTDampingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTDampingCoeff", 1.0)
);
scalar maxDeltaT
(
pimpleDict.lookupOrDefault<scalar>("maxDeltaT", GREAT)
);
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Set the reciprocal time-step from the local Courant number
rDeltaT.dimensionedInternalField() = max
(
1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
fvc::surfaceSum(mag(phi))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*rho.dimensionedInternalField())
);
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)*(fvc::interpolate(U) & mesh.Sf())
);
rDeltaT.dimensionedInternalField() = max
(
rDeltaT.dimensionedInternalField(),
fvc::surfaceSum(mag(phid))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*psi.dimensionedInternalField())
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT =
rDeltaT0
*max(rDeltaT/rDeltaT0, scalar(1) - rDeltaTDampingCoeff);
Info<< "Damped flow time scale min/max = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
}
}
...@@ -81,7 +81,7 @@ int main(int argc, char *argv[]) ...@@ -81,7 +81,7 @@ int main(int argc, char *argv[])
coalParcels.evolve(); coalParcels.evolve();
limestoneParcels.evolve(); limestoneParcels.evolve();
#include "setrDeltaT.H" #include "setRDeltaT.H"
#include "rhoEqn.H" #include "rhoEqn.H"
......
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
{
const dictionary& pimpleDict = pimple.dict();
// Maximum flow Courant number
scalar maxCo(readScalar(pimpleDict.lookup("maxCo")));
// Maximum time scale
scalar maxDeltaT(pimpleDict.lookupOrDefault<scalar>("maxDeltaT", GREAT));
// Smoothing parameter (0-1) when smoothing iterations > 0
scalar rDeltaTSmoothingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.1)
);
// Damping coefficient (1-0)
scalar rDeltaTDampingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTDampingCoeff", 0.2)
);
// Maximum change in cell temperature per iteration
// (relative to previous value)
scalar alphaTemp(pimpleDict.lookupOrDefault("alphaTemp", 0.05));
Info<< "Time scales min/max:" << endl;
// Cache old reciprocal time scale field
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Flow time scale
{
rDeltaT.dimensionedInternalField() =
(
fvc::surfaceSum(mag(phi))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*rho.dimensionedInternalField())
);
// Limit the largest time scale
rDeltaT.max(1/maxDeltaT);
Info<< " Flow = "
<< gMin(1/rDeltaT.internalField()) << ", "
<< gMax(1/rDeltaT.internalField()) << endl;
}
// Reaction source time scale
if (alphaTemp < 1.0)
{
volScalarField::DimensionedInternalField rDeltaTT
(
mag
(
(coalParcels.hsTrans() + limestoneParcels.hsTrans())
/(mesh.V()*runTime.deltaT())
+ combustion->Sh()()
)
/(
alphaTemp
*rho.dimensionedInternalField()
*thermo.Cp()().dimensionedInternalField()
*T.dimensionedInternalField()
)
);
Info<< " Temperature = "
<< gMin(1/(rDeltaTT.field() + VSMALL)) << ", "
<< gMax(1/(rDeltaTT.field() + VSMALL)) << endl;
rDeltaT.dimensionedInternalField() = max
(
rDeltaT.dimensionedInternalField(),
rDeltaTT
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
// Spatially smooth the time scale field
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT = max
(
rDeltaT,
(scalar(1.0) - rDeltaTDampingCoeff)*rDeltaT0
);
}
Info<< " Overall = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
}
// ************************************************************************* //
...@@ -74,7 +74,7 @@ int main(int argc, char *argv[]) ...@@ -74,7 +74,7 @@ int main(int argc, char *argv[])
parcels.evolve(); parcels.evolve();
#include "setrDeltaT.H" #include "setRDeltaT.H"
#include "rhoEqn.H" #include "rhoEqn.H"
......
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
{
const dictionary& pimpleDict = pimple.dict();
// Maximum flow Courant number
scalar maxCo(readScalar(pimpleDict.lookup("maxCo")));
// Maximum time scale
scalar maxDeltaT(pimpleDict.lookupOrDefault<scalar>("maxDeltaT", GREAT));
// Smoothing parameter (0-1) when smoothing iterations > 0
scalar rDeltaTSmoothingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.1)
);
// Damping coefficient (1-0)
scalar rDeltaTDampingCoeff
(
pimpleDict.lookupOrDefault<scalar>("rDeltaTDampingCoeff", 0.2)
);
// Maximum change in cell temperature per iteration
// (relative to previous value)
scalar alphaTemp(pimpleDict.lookupOrDefault("alphaTemp", 0.05));
Info<< "Time scales min/max:" << endl;
// Cache old reciprocal time scale field
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Flow time scale
{
rDeltaT.dimensionedInternalField() =
(
fvc::surfaceSum(mag(phi))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*rho.dimensionedInternalField())
);
// Limit the largest time scale
rDeltaT.max(1/maxDeltaT);
Info<< " Flow = "
<< gMin(1/rDeltaT.internalField()) << ", "
<< gMax(1/rDeltaT.internalField()) << endl;
}
// Reaction source time scale
{
volScalarField::DimensionedInternalField rDeltaTT
(
mag
(
parcels.hsTrans()/(mesh.V()*runTime.deltaT())
+ combustion->Sh()()
)
/(
alphaTemp
*rho.dimensionedInternalField()
*thermo.Cp()().dimensionedInternalField()
*T.dimensionedInternalField()
)
);
Info<< " Temperature = "
<< gMin(1/(rDeltaTT.field() + VSMALL)) << ", "
<< gMax(1/(rDeltaTT.field() + VSMALL)) << endl;
rDeltaT.dimensionedInternalField() = max
(
rDeltaT.dimensionedInternalField(),
rDeltaTT
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
// Spatially smooth the time scale field
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT = max
(
rDeltaT,
(scalar(1.0) - rDeltaTDampingCoeff)*rDeltaT0
);
}
Info<< " Overall = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
}
// ************************************************************************* //
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment