Skip to content
Snippets Groups Projects
Commit d26ebdc8 authored by mattijs's avatar mattijs
Browse files

ENH: potentialFoam tutorial: use 'coded' functionObject to generate analytical solution

parent 5c50c64d
Branches
Tags
No related merge requests found
......@@ -49,6 +49,10 @@ int main(int argc, char *argv[])
Info<< nl << "Calculating potential flow" << endl;
// Since solver contains no time loop it would never execute
// function objects so do it ourselves.
runTime.functionObjects().start();
adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
......@@ -99,6 +103,9 @@ int main(int argc, char *argv[])
p.write();
}
runTime.functionObjects().end();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
......
analyticalCylinder.C
EXE = $(FOAM_USER_APPBIN)/analyticalCylinder
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lfiniteVolume
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
analyticalCylinder
Description
Generates an analytical solution for potential flow around a cylinder.
Can be compared with the solution from the potentialFlow/cylinder example.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nEvaluating analytical solution" << endl;
volVectorField centres = UA.mesh().C();
volScalarField magCentres = mag(centres);
volScalarField theta = acos((centres & vector(1,0,0))/magCentres);
volVectorField cs2theta =
cos(2*theta)*vector(1,0,0)
+ sin(2*theta)*vector(0,1,0);
UA = uInfX*(dimensionedVector(vector(1,0,0))
- pow((radius/magCentres),2)*cs2theta);
// Force writing of UA (since time has not changed)
UA.write();
Info<< "end" << endl;
return 0;
}
// ************************************************************************* //
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
Info<< "Reading inlet velocity uInfX\n" << endl;
dimensionedScalar uInfX
(
"uInfx",
dimensionSet(0, 1, -1, 0, 0),
U.boundaryField()[3][0].x()
);
Info << "U at inlet = " << uInfX.value() << " m/s" << endl;
dimensionedScalar radius
(
"radius",
dimensionSet(0, 1, 0, 0, 0),
mag(U.mesh().boundary()[4].Cf()[0])
);
Info << "Cylinder radius = " << radius.value() << " m" << endl;
volVectorField UA
(
IOobject
(
"UA",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
U
);
......@@ -45,5 +45,74 @@ timePrecision 6;
runTimeModifiable true;
functions
{
difference
{
functionObjectLibs ("libutilityFunctionObjects.so");
type coded;
redirectType error;
code
#{
// Lookup U
Info<< "Looking up field U\n" << endl;
const volVectorField& U = mesh().lookupObject<volVectorField>("U");
Info<< "Reading inlet velocity uInfX\n" << endl;
dimensionedScalar uInfX
(
"uInfx",
dimensionSet(0, 1, -1, 0, 0),
U.boundaryField()[3][0].x()
);
Info << "U at inlet = " << uInfX.value() << " m/s" << endl;
dimensionedScalar radius
(
"radius",
dimensionSet(0, 1, 0, 0, 0),
mag(U.mesh().boundary()[4].Cf()[0])
);
Info << "Cylinder radius = " << radius.value() << " m" << endl;
volVectorField UA
(
IOobject
(
"UA",
mesh().time().timeName(),
U.mesh(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
U
);
Info<< "\nEvaluating analytical solution" << endl;
volVectorField centres = UA.mesh().C();
volScalarField magCentres = mag(centres);
volScalarField theta = acos((centres & vector(1,0,0))/magCentres);
volVectorField cs2theta =
cos(2*theta)*vector(1,0,0)
+ sin(2*theta)*vector(0,1,0);
UA = uInfX*(dimensionedVector(vector(1,0,0))
- pow((radius/magCentres),2)*cs2theta);
// Force writing of UA (since time has not changed)
UA.write();
volScalarField error("error", mag(U-UA)/mag(UA));
Info<<"Writing relative error in U to " << error.objectPath()
<< endl;
error.write();
#};
}
}
// ************************************************************************* //
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment