Commit dfe1df4c authored by Andrew Heather's avatar Andrew Heather
Browse files

new solver

parent a7f68e85
buoyantBoussinesqFoam.C
EXE = $(FOAM_APPBIN)/buoyantBoussinesqFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lincompressibleRASModels \
-lincompressibleTransportModels
{
volScalarField kappaEff
(
"kappaEff",
turbulence->nu() + turbulence->nut()/Prt
);
fvScalarMatrix TEqn
(
fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(kappaEff, T)
);
TEqn.relax();
TEqn.solve();
}
// Solve the momentum equation
tmp<fvVectorMatrix> UEqn
(
fvm::ddt(U)
+ fvm::div(phi, U)
+ turbulence->divDevReff(U)
);
UEqn().relax();
solve
(
UEqn()
==
-fvc::reconstruct
(
(
fvc::snGrad(pd)
- betaghf*fvc::snGrad(T)
) * mesh.magSf()
)
);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
buoyantBoussinesqSimpleFoam
Description
Steady-state solver for buoyant, turbulent flow of incompressible fluids
Uses the Boussinesq approximation:
\f[
rho_{eff} = 1 - beta(T - T_{ref})
\f]
where:
\f$ rho_{eff} \f$ = the effective (driving) density
beta = thermal expansion coefficient [1/K]
T = temperature [K]
\f$ T_{ref} \f$ = reference temperature [K]
Valid when:
\f[
rho_{eff} << 1
\f]
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "RASModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "readEnvironmentalProperties.H"
# include "createFields.H"
# include "initContinuityErrs.H"
# include "readTimeControls.H"
# include "CourantNo.H"
# include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++)
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readTimeControls.H"
# include "readPISOControls.H"
# include "CourantNo.H"
# include "setDeltaT.H"
# include "UEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
# include "TEqn.H"
# include "pdEqn.H"
}
turbulence->correct();
if (runTime.write())
{
# include "writeAdditionalFields.H"
}
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "Reading thermophysical properties\n" << endl;
Info<< "Reading field T\n" << endl;
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// kinematic pd
Info<< "Reading field pd\n" << endl;
volScalarField pd
(
IOobject
(
"pd",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
# include "createPhi.H"
# include "readTransportProperties.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<incompressible::RASModel> turbulence
(
incompressible::RASModel::New(U, phi, laminarTransport)
);
Info<< "Calculating field beta*(g.h)\n" << endl;
surfaceScalarField betaghf("betagh", beta*(g & mesh.Cf()));
label pdRefCell = 0;
scalar pdRefValue = 0.0;
setRefCell
(
pd,
mesh.solutionDict().subDict("SIMPLE"),
pdRefCell,
pdRefValue
);
{
volScalarField rUA("rUA", 1.0/UEqn().A());
surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA));
U = rUA*UEqn().H();
UEqn.clear();
phi =
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, U, phi)
+ betaghf*fvc::snGrad(T)*rUAf*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::laplacian(rUAf, pd) == fvc::div(phi)
);
// retain the residual from the first iteration
if (nonOrth == 0)
{
pdEqn.solve(mesh.solver(pd.name() + "Final"));
}
else
{
pdEqn.solve(mesh.solver(pd.name()));
}
if (nonOrth == nNonOrthCorr)
{
// Calculate the conservative fluxes
phi -= pdEqn.flux();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U -=
rUA
*fvc::reconstruct((pdEqn.flux() - betaghf*fvc::snGrad(T))/rUAf);
U.correctBoundaryConditions();
}
}
#include "continuityErrs.H"
}
singlePhaseTransportModel laminarTransport(U, phi);
// thermal expansion coefficient [1/K]
dimensionedScalar beta(laminarTransport.lookup("beta"));
// reference temperature [K]
dimensionedScalar TRef(laminarTransport.lookup("TRef"));
// reference kinematic pressure [m2/s2]
dimensionedScalar pRef(laminarTransport.lookup("pRef"));
// turbulent Prandtl number
dimensionedScalar Prt(laminarTransport.lookup("Prt"));
{
volScalarField rhoEff
(
IOobject
(
"rhoEff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
1.0 - beta*(T - TRef)
);
rhoEff.write();
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
pd + rhoEff*(g & mesh.C()) + pRef
);
p.write();
}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment