Skip to content
Snippets Groups Projects
Commit eff13c86 authored by andy's avatar andy
Browse files

ENH: totalPressure boundary condition header documentation update

parent c00c3456
No related merge requests found
......@@ -33,47 +33,47 @@ Description
1. incompressible subsonic:
\f[
p_T = p_0 + 0.5 |U|^2
p_p = p_0 - 0.5 |U|^2
\f]
where
\vartable
p_T | incompressible total pressure [m2/s2]
p_0 | incompressible reference pressure [m2/s2]
p_p | incompressible pressure at patch [m2/s2]
p_0 | incompressible total pressure [m2/s2]
U | velocity
\endvartable
2. compressible subsonic:
\f[
p_T = p_0 + 0.5 \rho |U|^2
p_p = p_0 - 0.5 \rho |U|^2
\f]
where
\vartable
p_T | total pressure [Pa]
p_0 | reference pressure [Pa]
p_p | pressure at patch [Pa]
p_0 | total pressure [Pa]
\rho | density [kg/m3]
U | velocity
\endvartable
3. compressible transonic (\gamma <= 1):
\f[
p_T = \frac{p_0}{1 + 0.5 \psi |U|^2}
p_p = \frac{p_0}{1 + 0.5 \psi |U|^2}
\f]
where
\vartable
p_T | total pressure [Pa]
p_0 | reference pressure [Pa]
p_p | pressure at patch [Pa]
p_0 | total pressure [Pa]
G | coefficient given by \f$\frac{\gamma}{1-\gamma}\f$
\endvartable
4. compressible supersonic (\gamma > 1):
\f[
p_T = \frac{p_0}{(1 + 0.5 \psi G |U|^2)^{\frac{1}{G}}}
p_p = \frac{p_0}{(1 + 0.5 \psi G |U|^2)^{\frac{1}{G}}}
\f]
where
\vartable
p_p | pressure at patch [Pa]
p_0 | total pressure [Pa]
\gamma | ratio of specific heats (Cp/Cv)
p_T | total pressure [Pa]
p_0 | reference pressure [Pa]
\psi | compressibility [m2/s2]
G | coefficient given by \f$\frac{\gamma}{1-\gamma}\f$
\endvartable
......@@ -98,7 +98,7 @@ Description
rho | density field name | no | none
psi | compressibility field name | no | none
gamma | ratio of specific heats (Cp/Cv) | yes |
p0 | static pressure reference | yes |
p0 | total pressure | yes |
\endtable
Example of the boundary condition specification:
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment