- Mar 31, 2022
- Dec 20, 2021
-
-
Andrew Heather authored
-
- Jun 28, 2021
-
-
Andrew Heather authored
Minor clean-up
-
- Mar 12, 2021
-
-
- Dec 23, 2020
- Jun 29, 2020
-
-
Andrew Heather authored
-
- Dec 23, 2019
-
-
Andrew Heather authored
-
- Jun 25, 2019
-
-
Andrew Heather authored
-
- Dec 19, 2018
-
-
Andrew Heather authored
-
- Jun 28, 2018
-
-
Andrew Heather authored
-
- Feb 17, 2017
-
-
Henry Weller authored
The fundamental properties provided by the specie class hierarchy were mole-based, i.e. provide the properties per mole whereas the fundamental properties provided by the liquidProperties and solidProperties classes are mass-based, i.e. per unit mass. This inconsistency made it impossible to instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV transport solvers on liquidProperties. In order to combine VoF with film and/or Lagrangian models it is essential that the physical propertied of the three representations of the liquid are consistent which means that it is necessary to instantiate the thermodynamics packages on liquidProperties. This requires either liquidProperties to be rewritten mole-based or the specie classes to be rewritten mass-based. Given that most of OpenFOAM solvers operate mass-based (solve for mass-fractions and provide mass-fractions to sub-models it is more consistent and efficient if the low-level thermodynamics is also mass-based. This commit includes all of the changes necessary for all of the thermodynamics in OpenFOAM to operate mass-based and supports the instantiation of thermodynamics packages on liquidProperties. Note that most users, developers and contributors to OpenFOAM will not notice any difference in the operation of the code except that the confusing nMoles 1; entries in the thermophysicalProperties files are no longer needed or used and have been removed in this commet. The only substantial change to the internals is that species thermodynamics are now "mixed" with mass rather than mole fractions. This is more convenient except for defining reaction equilibrium thermodynamics for which the molar rather than mass composition is usually know. The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and equilibriumFlameT utilities in which the species thermodynamics are pre-multiplied by their molecular mass to effectively convert them to mole-basis to simplify the definition of the reaction equilibrium thermodynamics, e.g. in equilibriumCO // Reactants (mole-based) thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W(); // Oxidant (mole-based) thermo O2(thermoData.subDict("O2")); O2 *= O2.W(); thermo N2(thermoData.subDict("N2")); N2 *= N2.W(); // Intermediates (mole-based) thermo H2(thermoData.subDict("H2")); H2 *= H2.W(); // Products (mole-based) thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W(); thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W(); thermo CO(thermoData.subDict("CO")); CO *= CO.W(); // Product dissociation reactions thermo CO2BreakUp ( CO2 == CO + 0.5*O2 ); thermo H2OBreakUp ( H2O == H2 + 0.5*O2 ); Please report any problems with this substantial but necessary rewrite of the thermodynamic at https://bugs.openfoam.org Henry G. Weller CFD Direct Ltd.
-
- Dec 22, 2015
-
-
Andrew Heather authored
-
- Dec 09, 2015
-
-
Andrew Heather authored
-
- Jun 28, 2015
-
-
Henry Weller authored
Replaces LTSReactingParcelFoam and LTSCoalChemistryFoam Select LTS via the ddtScheme: ddtSchemes { default localEuler rDeltaT; }
-
- Dec 11, 2014
-
-
OpenFOAM-admin authored
-
- Feb 17, 2014
-
-
OpenFOAM-admin authored
-
- Aug 14, 2011
-
-
Henry authored
-
- Jun 17, 2011
-
-
OpenFOAM-admin authored
-
- Jun 08, 2011
-
-
andy authored
-
- Jun 07, 2011
-
-
andy authored
-
- May 27, 2011
-
-
andy authored
-
- Mar 02, 2011
-
-
andy authored
-
- Nov 02, 2010
-
-
Andrew Heather authored
-
- Oct 18, 2010
-
-
Andrew Heather authored
-
- Oct 11, 2010
-
-
Andrew Heather authored
-
- Dec 10, 2009
-
-
Andrew Heather authored
-
Andrew Heather authored
-
- Oct 21, 2009
-
-
Andrew Heather authored
-
- Jun 22, 2009
-
-
Andrew Heather authored
-
Andrew Heather authored
-
- Jun 16, 2009
-
-
Andrew Heather authored
-