Skip to content
Snippets Groups Projects
  1. Apr 28, 2019
  2. Feb 18, 2017
    • Henry Weller's avatar
      thermophysicalProperties: New base-class for liquidProperties and in the future gasProperties · d2be6454
      Henry Weller authored
      Description
          Base-class for thermophysical properties of solids, liquids and gases
          providing an interface compatible with the templated thermodynamics
          packages.
      
      liquidProperties, solidProperties and thermophysicalFunction libraries have been
      combined with the new thermophysicalProperties class into a single
      thermophysicalProperties library to simplify compilation and linkage of models,
      libraries and applications dependent on these classes.
      d2be6454
  3. Feb 17, 2017
    • Henry Weller's avatar
      thermophysicalModels: Changed specie thermodynamics from mole to mass basis · c52e4b58
      Henry Weller authored
      The fundamental properties provided by the specie class hierarchy were
      mole-based, i.e. provide the properties per mole whereas the fundamental
      properties provided by the liquidProperties and solidProperties classes are
      mass-based, i.e. per unit mass.  This inconsistency made it impossible to
      instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
      transport solvers on liquidProperties.  In order to combine VoF with film and/or
      Lagrangian models it is essential that the physical propertied of the three
      representations of the liquid are consistent which means that it is necessary to
      instantiate the thermodynamics packages on liquidProperties.  This requires
      either liquidProperties to be rewritten mole-based or the specie classes to be
      rewritten mass-based.  Given that most of OpenFOAM solvers operate
      mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
      is more consistent and efficient if the low-level thermodynamics is also
      mass-based.
      
      This commit includes all of the changes necessary for all of the thermodynamics
      in OpenFOAM to operate mass-based and supports the instantiation of
      thermodynamics packages on liquidProperties.
      
      Note that most users, developers and contributors to OpenFOAM will not notice
      any difference in the operation of the code except that the confusing
      
          nMoles     1;
      
      entries in the thermophysicalProperties files are no longer needed or used and
      have been removed in this commet.  The only substantial change to the internals
      is that species thermodynamics are now "mixed" with mass rather than mole
      fractions.  This is more convenient except for defining reaction equilibrium
      thermodynamics for which the molar rather than mass composition is usually know.
      The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
      equilibriumFlameT utilities in which the species thermodynamics are
      pre-multiplied by their molecular mass to effectively convert them to mole-basis
      to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
      equilibriumCO
      
          // Reactants (mole-based)
          thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();
      
          // Oxidant (mole-based)
          thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
          thermo N2(thermoData.subDict("N2")); N2 *= N2.W();
      
          // Intermediates (mole-based)
          thermo H2(thermoData.subDict("H2")); H2 *= H2.W();
      
          // Products (mole-based)
          thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
          thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
          thermo CO(thermoData.subDict("CO")); CO *= CO.W();
      
          // Product dissociation reactions
      
          thermo CO2BreakUp
          (
              CO2 == CO + 0.5*O2
          );
      
          thermo H2OBreakUp
          (
              H2O == H2 + 0.5*O2
          );
      
      Please report any problems with this substantial but necessary rewrite of the
      thermodynamic at https://bugs.openfoam.org
      
      Henry G. Weller
      CFD Direct Ltd.
      c52e4b58
  4. Jan 01, 2016
  5. Feb 17, 2015
  6. Jan 21, 2015
    • Henry's avatar
      Updated the whole of OpenFOAM to use the new templated TurbulenceModels library · 2aec2496
      Henry authored
      The old separate incompressible and compressible libraries have been removed.
      
      Most of the commonly used RANS and LES models have been upgraded to the
      new framework but there are a few missing which will be added over the
      next few days, in particular the realizable k-epsilon model.  Some of
      the less common incompressible RANS models have been introduced into the
      new library instantiated for incompressible flow only.  If they prove to
      be generally useful they can be templated for compressible and
      multiphase application.
      
      The Spalart-Allmaras DDES and IDDES models have been thoroughly
      debugged, removing serious errors concerning the use of S rather than
      Omega.
      
      The compressible instances of the models have been augmented by a simple
      backward-compatible eddyDiffusivity model for thermal transport based on
      alphat and alphaEff.  This will be replaced with a separate run-time
      selectable thermal transport model framework in a few wee...
      2aec2496
  7. Jan 11, 2015
  8. Sep 11, 2013
  9. Nov 16, 2012
  10. Aug 23, 2012
    • Henry's avatar
      Thermodynamics: Rationalised the base classes for fluid and solid thermo. · 8f4b56b3
      Henry authored
      New base class for fluid and solid thermo: veryBasicThermo
      Base class for fluid thermo: basicThermo (derived from veryBasicThermo)
      Base class for solid thermo: solidThermo (derived from veryBasicThermo)
      
      Note in next commit basicThermo -> fluidThermo, veryBasicThermo -> basicThermo
      8f4b56b3
  11. Sep 07, 2011
  12. Jun 27, 2011
  13. Jun 03, 2011
  14. Jun 02, 2011