Skip to content
Snippets Groups Projects
Commit 90d2f80a authored by andy's avatar andy
Browse files

ENH: Deprecated channelFoam solver - can now use pimpleFoam with field sources

parent 73abe46e
Branches
No related merge requests found
channelFoam.C
EXE = $(FOAM_APPBIN)/channelFoam
EXE_INC = \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/LES/LESModel \
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lincompressibleLESModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
channelFoam
Description
Incompressible LES solver for flow in a channel.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "LESModel.H"
#include "IFstream.H"
#include "OFstream.H"
#include "Random.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readTransportProperties.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "createGradP.H"
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "readPISOControls.H"
#include "CourantNo.H"
sgsModel->correct();
fvVectorMatrix UEqn
(
fvm::ddt(U)
+ fvm::div(phi, U)
+ sgsModel->divDevBeff(U)
==
flowDirection*gradP
);
if (momentumPredictor)
{
solve(UEqn == -fvc::grad(p));
}
// --- PISO loop
volScalarField rAU(1.0/UEqn.A());
for (int corr=0; corr<nCorr; corr++)
{
U = rAU*UEqn.H();
phi = (fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rAU, U, phi);
adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(rAU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{
pEqn.solve(mesh.solver(p.name() + "Final"));
}
else
{
pEqn.solve(mesh.solver(p.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}
#include "continuityErrs.H"
U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();
}
// Correct driving force for a constant mass flow rate
// Extract the velocity in the flow direction
dimensionedScalar magUbarStar =
(flowDirection & U)().weightedAverage(mesh.V());
// Calculate the pressure gradient increment needed to
// adjust the average flow-rate to the correct value
dimensionedScalar gragPplus =
(magUbar - magUbarStar)/rAU.weightedAverage(mesh.V());
U += flowDirection*rAU*gragPplus;
gradP += gragPplus;
Info<< "Uncorrected Ubar = " << magUbarStar.value() << tab
<< "pressure gradient = " << gradP.value() << endl;
runTime.write();
#include "writeGradP.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
# include "createPhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::LESModel> sgsModel
(
incompressible::LESModel::New(U, phi, laminarTransport)
);
dimensionedScalar gradP
(
"gradP",
dimensionSet(0, 1, -2, 0, 0),
0.0
);
IFstream gradPFile
(
runTime.path()/runTime.timeName()/"uniform"/"gradP.raw"
);
if (gradPFile.good())
{
gradPFile >> gradP;
Info<< "Reading average pressure gradient" <<endl
<< endl;
}
else
{
Info<< "Initializing with 0 pressure gradient" <<endl
<< endl;
};
Info<< "\nReading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
dimensionedScalar nu
(
transportProperties.lookup("nu")
);
// Read centerline velocity for channel simulations
dimensionedVector Ubar
(
transportProperties.lookup("Ubar")
);
dimensionedScalar magUbar = mag(Ubar);
vector flowDirection = (Ubar/magUbar).value();
if (runTime.outputTime())
{
OFstream gradPFile
(
runTime.path()/runTime.timeName()/"uniform"/"gradP.raw"
);
if (gradPFile.good())
{
gradPFile << gradP << endl;
}
else
{
FatalErrorIn(args.executable())
<< "Cannot open file "
<< runTime.path()/runTime.timeName()/"uniform"/"gradP.raw"
<< exit(FatalError);
};
};
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment