Skip to content
Snippets Groups Projects
  1. Apr 26, 2017
    • Henry Weller's avatar
      externalWallHeatFluxTemperature: Added optional support for radiative flux to the outside · 104aac5f
      Henry Weller authored
      By specifying the optional outside surface emissivity radiative heat transfer to
      the ambient conditions is enabled.  The far-field is assumed to have an
      emissivity of 1 but this could be made an optional input in the future if
      needed.
      
      Relaxation of the surface temperature is now provided via the optional
      "relaxation" which aids stability of steady-state runs with strong radiative
      coupling to the boundary.
      104aac5f
  2. Apr 08, 2017
    • Henry Weller's avatar
      externalWallHeatFluxTemperatureFvPatchScalarField: Added "power" heat source option · 861b273e
      Henry Weller authored
      by combining with and rationalizing functionality from
      turbulentHeatFluxTemperatureFvPatchScalarField.
      externalWallHeatFluxTemperatureFvPatchScalarField now replaces
      turbulentHeatFluxTemperatureFvPatchScalarField which is no longer needed and has
      been removed.
      
      Description
          This boundary condition applies a heat flux condition to temperature
          on an external wall in one of three modes:
      
            - fixed power: supply Q
            - fixed heat flux: supply q
            - fixed heat transfer coefficient: supply h and Ta
      
          where:
          \vartable
              Q  | Power [W]
              q  | Heat flux [W/m^2]
              h  | Heat transfer coefficient [W/m^2/K]
              Ta | Ambient temperature [K]
          \endvartable
      
          For heat transfer coefficient mode optional thin thermal layer resistances
          can be specified through thicknessLayers and kappaLayers entries.
      
          The thermal conductivity \c kappa can either be retrieved from various
          possible sources, as detailed in the class temperatureCoupledBase.
      
      Usage
          \table
          Property     | Description                 | Required | Default value
          mode         | 'power', 'flux' or 'coefficient' | yes |
          Q            | Power [W]                   | for mode 'power'     |
          q            | Heat flux [W/m^2]           | for mode 'flux'     |
          h            | Heat transfer coefficient [W/m^2/K] | for mode 'coefficent' |
          Ta           | Ambient temperature [K]     | for mode 'coefficient' |
          thicknessLayers | Layer thicknesses [m] | no |
          kappaLayers  | Layer thermal conductivities [W/m/K] | no |
          qr           | Name of the radiative field | no | none
          qrRelaxation | Relaxation factor for radiative field | no | 1
          kappaMethod  | Inherited from temperatureCoupledBase | inherited |
          kappa        | Inherited from temperatureCoupledBase | inherited |
          \endtable
      
          Example of the boundary condition specification:
          \verbatim
          <patchName>
          {
              type            externalWallHeatFluxTemperature;
      
              mode            coefficient;
      
              Ta              uniform 300.0;
              h               uniform 10.0;
              thicknessLayers (0.1 0.2 0.3 0.4);
              kappaLayers     (1 2 3 4);
      
              kappaMethod     fluidThermo;
      
              value           $internalField;
          }
          \endverbatim
      861b273e
  3. Dec 05, 2016
  4. Apr 30, 2016
    • Henry Weller's avatar
      GeometricField: Renamed internalField() -> primitiveField() and... · 3c053c2f
      Henry Weller authored
      GeometricField: Renamed internalField() -> primitiveField() and dimensionedInternalField() -> internalField()
      
      These new names are more consistent and logical because:
      
      primitiveField():
      primitiveFieldRef():
          Provides low-level access to the Field<Type> (primitive field)
          without dimension or mesh-consistency checking.  This should only be
          used in the low-level functions where dimensional consistency is
          ensured by careful programming and computational efficiency is
          paramount.
      
      internalField():
      internalFieldRef():
          Provides access to the DimensionedField<Type, GeoMesh> of values on
          the internal mesh-type for which the GeometricField is defined and
          supports dimension and checking and mesh-consistency checking.
      3c053c2f
  5. Apr 16, 2016
  6. Jan 09, 2016
  7. Nov 11, 2015
  8. May 25, 2015
  9. Jan 21, 2015
    • Henry's avatar
      Updated the whole of OpenFOAM to use the new templated TurbulenceModels library · 2aec2496
      Henry authored
      The old separate incompressible and compressible libraries have been removed.
      
      Most of the commonly used RANS and LES models have been upgraded to the
      new framework but there are a few missing which will be added over the
      next few days, in particular the realizable k-epsilon model.  Some of
      the less common incompressible RANS models have been introduced into the
      new library instantiated for incompressible flow only.  If they prove to
      be generally useful they can be templated for compressible and
      multiphase application.
      
      The Spalart-Allmaras DDES and IDDES models have been thoroughly
      debugged, removing serious errors concerning the use of S rather than
      Omega.
      
      The compressible instances of the models have been augmented by a simple
      backward-compatible eddyDiffusivity model for thermal transport based on
      alphat and alphaEff.  This will be replaced with a separate run-time
      selectable thermal transport model framework in a few weeks.
      
      For simplicity and ease of maintenance and further development the
      turbulent transport and wall modeling is based on nut/nuEff rather than
      mut/muEff for compressible models so that all forms of turbulence models
      can use the same wall-functions and other BCs.
      
      All turbulence model selection made in the constant/turbulenceProperties
      dictionary with RAS and LES as sub-dictionaries rather than in separate
      files which added huge complexity for multiphase.
      
      All tutorials have been updated so study the changes and update your own
      cases by comparison with similar cases provided.
      
      Sorry for the inconvenience in the break in backward-compatibility but
      this update to the turbulence modeling is an essential step in the
      future of OpenFOAM to allow more models to be added and maintained for a
      wider range of cases and physics.  Over the next weeks and months more
      turbulence models will be added of single and multiphase flow, more
      additional sub-models and further development and testing of existing
      models.  I hope this brings benefits to all OpenFOAM users.
      
      Henry G. Weller
      2aec2496
  10. Dec 29, 2014
  11. Oct 21, 2014
  12. Oct 14, 2014
  13. May 20, 2014
  14. Apr 30, 2014
  15. Apr 04, 2014
  16. Dec 12, 2013
  17. Sep 12, 2013
  18. Aug 06, 2013
  19. Apr 08, 2013
  20. Apr 04, 2013
  21. Apr 03, 2013
  22. Mar 27, 2013
  23. Sep 07, 2012
  24. May 25, 2012
  25. May 08, 2012
  26. Mar 21, 2012
  27. Feb 20, 2012
  28. Feb 03, 2012
  29. Nov 25, 2011
  30. Oct 21, 2011
  31. Sep 09, 2011
  32. Sep 05, 2011
  33. Aug 14, 2011
  34. Jun 03, 2011
  35. Feb 11, 2011
  36. Feb 10, 2011
  37. Feb 09, 2011