Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "solidParticleCloud.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTemplateTypeNameAndDebug(Cloud<solidParticle>, 0);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::solidParticle::move
(
{
td.switchProcessor = false;
td.keepParticle = true;
while (td.keepParticle && !td.switchProcessor && stepFraction() < 1)
Pout<< "Time = " << mesh().time().timeName()
<< " trackTime = " << trackTime
<< " steptFraction() = " << stepFraction() << endl;
}
const scalar sfrac = stepFraction();
const scalar f = 1 - stepFraction();
trackToAndHitFace(f*trackTime*U_, f, cloud, td);
const scalar dt = (stepFraction() - sfrac)*trackTime;
const tetIndices tetIs = this->currentTetIndices();
scalar rhoc = td.rhoInterp().interpolate(this->coordinates(), tetIs);
vector Uc = td.UInterp().interpolate(this->coordinates(), tetIs);
scalar nuc = td.nuInterp().interpolate(this->coordinates(), tetIs);
scalar magUr = mag(Uc - U_);
scalar ReFunc = 1.0;
scalar Re = magUr*d_/nuc;
if (Re > 0.01)
{
ReFunc += 0.15*pow(Re, 0.687);
}
scalar Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));
U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);
}
return td.keepParticle;
}
bool Foam::solidParticle::hitPatch(solidParticleCloud&, trackingData&)
{
return false;
}
void Foam::solidParticle::hitProcessorPatch
(
solidParticleCloud&,
)
{
td.switchProcessor = true;
}
void Foam::solidParticle::hitWallPatch(solidParticleCloud& cloud, trackingData&)
const vector nw = normal();
scalar Un = U_ & nw;
vector Ut = U_ - Un*nw;
if (Un > 0)
{
U_ -= (1.0 + cloud.e())*Un*nw;
void Foam::solidParticle::transformProperties(const tensor& T)
U_ = transform(T, U_);
}
void Foam::solidParticle::transformProperties(const vector& separation)
{
particle::transformProperties(separation);
}
// ************************************************************************* //