Newer
Older
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseMixture.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "Time.H"
#include "subCycle.H"
Henry
committed
#include "MULES.H"
#include "surfaceInterpolate.H"
#include "fvcGrad.H"
Henry
committed
#include "fvcSnGrad.H"
#include "fvcDiv.H"
Henry
committed
#include "fvcFlux.H"
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
Henry
committed
const Foam::scalar Foam::multiphaseMixture::convertToRad =
henry
committed
Foam::constant::mathematical::pi/180.0;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::multiphaseMixture::calcAlphas()
{
scalar level = 0.0;
alphas_ == 0.0;
forAllIter(PtrDictionary<phase>, phases_, iter)
{
alphas_ += level*iter();
level += 1.0;
}
alphas_.correctBoundaryConditions();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseMixture::multiphaseMixture
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
IOdictionary
(
IOobject
(
"transportProperties",
U.time().constant(),
U.db(),
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
phases_(lookup("phases"), phase::iNew(U, phi)),
mesh_(U.mesh()),
U_(U),
phi_(phi),
rhoPhi_
(
IOobject
(
"rho*phi",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
dimensionedScalar("rho*phi", dimMass/dimTime, 0.0)
),
alphas_
(
IOobject
(
"alphas",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh_,
dimensionedScalar("alphas", dimless, 0.0),
zeroGradientFvPatchScalarField::typeName
),
sigmas_(lookup("sigmas")),
dimSigma_(1, 0, -2, 0, 0),
deltaN_
(
"deltaN",
1e-8/pow(average(mesh_.V()), 1.0/3.0)
)
{
calcAlphas();
alphas_.write();
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::rho() const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<volScalarField> trho = iter()*iter().rho();
for (++iter; iter != phases_.end(); ++iter)
{
trho() += iter()*iter().rho();
}
return trho;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseMixture::rho(const label patchi) const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value();
for (++iter; iter != phases_.end(); ++iter)
{
trho() += iter().boundaryField()[patchi]*iter().rho().value();
}
return trho;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::mu() const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<volScalarField> tmu = iter()*iter().rho()*iter().nu();
for (++iter; iter != phases_.end(); ++iter)
{
tmu() += iter()*iter().rho()*iter().nu();
}
return tmu;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseMixture::mu(const label patchi) const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<scalarField> tmu =
iter().boundaryField()[patchi]
*iter().rho().value()
*iter().nu(patchi);
for (++iter; iter != phases_.end(); ++iter)
{
tmu() +=
iter().boundaryField()[patchi]
*iter().rho().value()
*iter().nu(patchi);
}
return tmu;
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseMixture::muf() const
{
PtrDictionary<phase>::const_iterator iter = phases_.begin();
tmp<surfaceScalarField> tmuf =
fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu());
for (++iter; iter != phases_.end(); ++iter)
{
tmuf() +=
fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu());
}
return tmuf;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::nu() const
{
return mu()/rho();
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseMixture::nu(const label patchi) const
{
return mu(patchi)/rho(patchi);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseMixture::nuf() const
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
{
return muf()/fvc::interpolate(rho());
}
Foam::tmp<Foam::surfaceScalarField>
Foam::multiphaseMixture::surfaceTensionForce() const
{
tmp<surfaceScalarField> tstf
(
new surfaceScalarField
(
IOobject
(
"surfaceTensionForce",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"surfaceTensionForce",
dimensionSet(1, -2, -2, 0, 0),
0.0
)
)
);
surfaceScalarField& stf = tstf();
forAllConstIter(PtrDictionary<phase>, phases_, iter1)
{
const phase& alpha1 = iter1();
PtrDictionary<phase>::const_iterator iter2 = iter1;
++iter2;
for (; iter2 != phases_.end(); ++iter2)
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
{
const phase& alpha2 = iter2();
sigmaTable::const_iterator sigma =
sigmas_.find(interfacePair(alpha1, alpha2));
if (sigma == sigmas_.end())
{
FatalErrorIn("multiphaseMixture::surfaceTensionForce() const")
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
<< " in list of sigma values"
<< exit(FatalError);
}
stf += dimensionedScalar("sigma", dimSigma_, sigma())
*fvc::interpolate(K(alpha1, alpha2))*
(
fvc::interpolate(alpha2)*fvc::snGrad(alpha1)
- fvc::interpolate(alpha1)*fvc::snGrad(alpha2)
);
}
}
return tstf;
}
void Foam::multiphaseMixture::solve()
{
forAllIter(PtrDictionary<phase>, phases_, iter)
{
iter().correct();
}
const Time& runTime = mesh_.time();
volScalarField& alpha = phases_.first();
Henry
committed
const dictionary& alphaControls = mesh_.solverDict("alpha");
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
scalar cAlpha(readScalar(alphaControls.lookup("cAlpha")));
if (nAlphaSubCycles > 1)
{
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("0", rhoPhi_.dimensions(), 0)
dimensionedScalar totalDeltaT = runTime.deltaT();
for
(
subCycle<volScalarField> alphaSubCycle(alpha, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
Henry
committed
solveAlphas(cAlpha);
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi_;
}
rhoPhi_ = rhoPhiSum;
}
else
{
Henry
committed
solveAlphas(cAlpha);
void Foam::multiphaseMixture::correct()
{}
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseMixture::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
// Correction for the boundary condition on the unit normal nHat on
// walls to produce the correct contact angle.
// The dynamic contact angle is calculated from the component of the
// velocity on the direction of the interface, parallel to the wall.
void Foam::multiphaseMixture::correctContactAngle
(
const phase& alpha1,
const phase& alpha2,
surfaceVectorField::GeometricBoundaryField& nHatb
) const
{
const volScalarField::GeometricBoundaryField& gbf
const fvBoundaryMesh& boundary = mesh_.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
const alphaContactAngleFvPatchScalarField& acap =
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
vectorField& nHatPatch = nHatb[patchi];
vectorField AfHatPatch
(
mesh_.Sf().boundaryField()[patchi]
/mesh_.magSf().boundaryField()[patchi]
);
alphaContactAngleFvPatchScalarField::thetaPropsTable::
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
const_iterator tp =
acap.thetaProps().find(interfacePair(alpha1, alpha2));
if (tp == acap.thetaProps().end())
{
FatalErrorIn
(
"multiphaseMixture::correctContactAngle"
"(const phase& alpha1, const phase& alpha2, "
"fvPatchVectorFieldField& nHatb) const"
) << "Cannot find interface " << interfacePair(alpha1, alpha2)
<< "\n in table of theta properties for patch "
<< acap.patch().name()
<< exit(FatalError);
}
bool matched = (tp.key().first() == alpha1.name());
scalar theta0 = convertToRad*tp().theta0(matched);
scalarField theta(boundary[patchi].size(), theta0);
scalar uTheta = tp().uTheta();
// Calculate the dynamic contact angle if required
if (uTheta > SMALL)
{
scalar thetaA = convertToRad*tp().thetaA(matched);
scalar thetaR = convertToRad*tp().thetaR(matched);
// Calculated the component of the velocity parallel to the wall
vectorField Uwall
(
U_.boundaryField()[patchi].patchInternalField()
- U_.boundaryField()[patchi]
);
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
// Find the direction of the interface parallel to the wall
vectorField nWall
(
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
);
// Normalise nWall
nWall /= (mag(nWall) + SMALL);
// Calculate Uwall resolved normal to the interface parallel to
// the interface
scalarField uwall(nWall & Uwall);
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
}
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatPatch & AfHatPatch);
scalarField b1(cos(theta));
scalarField b2(nHatPatch.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatPatch = a*AfHatPatch + b*nHatPatch;
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
}
}
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::K
(
const phase& alpha1,
const phase& alpha2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(alpha1, alpha2);
correctContactAngle(alpha1, alpha2, tnHatfv().boundaryField());
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseMixture::nearInterface() const
{
(
IOobject
(
"nearInterface",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("nearInterface", dimless, 0.0)
)
);
forAllConstIter(PtrDictionary<phase>, phases_, iter)
{
tnearInt() = max(tnearInt(), pos(iter() - 0.01)*pos(0.99 - iter()));
}
return tnearInt;
}
void Foam::multiphaseMixture::solveAlphas
(
const scalar cAlpha
)
{
static label nSolves=-1;
nSolves++;
word alphaScheme("div(phi,alpha)");
Henry
committed
word alpharScheme("div(phirb,alpha)");
surfaceScalarField phic(mag(phi_/mesh_.magSf()));
phic = min(cAlpha*phic, max(phic));
Henry
committed
PtrList<surfaceScalarField> phiAlphaCorrs(phases_.size());
int phasei = 0;
Henry
committed
forAllIter(PtrDictionary<phase>, phases_, iter)
{
phase& alpha = iter();
Henry
committed
phiAlphaCorrs.set
(
phasei,
new surfaceScalarField
(
fvc::flux
(
phi_,
alpha,
alphaScheme
)
)
);
Henry
committed
surfaceScalarField& phiAlphaCorr = phiAlphaCorrs[phasei];
Henry
committed
forAllIter(PtrDictionary<phase>, phases_, iter2)
Henry
committed
phase& alpha2 = iter2();
if (&alpha2 == &alpha) continue;
Henry
committed
surfaceScalarField phir(phic*nHatf(alpha, alpha2));
Henry
committed
phiAlphaCorr += fvc::flux
Henry
committed
-fvc::flux(-phir, alpha2, alpharScheme),
alpha,
alpharScheme
Henry
committed
}
Henry
committed
MULES::limit
(
geometricOneField(),
alpha,
phi_,
phiAlphaCorr,
zeroField(),
zeroField(),
1,
0,
3,
true
);
phasei++;
}
Henry
committed
MULES::limitSum(phiAlphaCorrs);
rhoPhi_ = dimensionedScalar("0", dimensionSet(1, 0, -1, 0, 0), 0);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("sumAlpha", dimless, 0)
);
Henry
committed
phasei = 0;
Henry
committed
forAllIter(PtrDictionary<phase>, phases_, iter)
{
phase& alpha = iter();
Henry
committed
surfaceScalarField& phiAlpha = phiAlphaCorrs[phasei];
phiAlpha += upwind<scalar>(mesh_, phi_).flux(alpha);
Henry
committed
MULES::explicitSolve
(
geometricOneField(),
alpha,
phiAlpha,
zeroField(),
zeroField()
);
rhoPhi_ += phiAlpha*alpha.rho();
Info<< alpha.name() << " volume fraction, min, max = "
<< alpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(alpha).value()
<< ' ' << max(alpha).value()
<< endl;
Henry
committed
sumAlpha += alpha;
Henry
committed
phasei++;
Henry
committed
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
calcAlphas();
}
bool Foam::multiphaseMixture::read()
{
if (transportModel::read())
{
bool readOK = true;
PtrList<entry> phaseData(lookup("phases"));
label phasei = 0;
forAllIter(PtrDictionary<phase>, phases_, iter)
{
readOK &= iter().read(phaseData[phasei++].dict());
}
lookup("sigmas") >> sigmas_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //